Back to Search Start Over

Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY translocase

Authors :
Daniela Münch
Daniel J. Müller
Volker Dötsch
Hans-Georg Sahl
Michael Zocher
Tanja Schneider
Yi Ma
Erik Henrich
Christian Roos
Josef Wachtveitl
Davide Proverbio
Frank Bernhard
Frank Scholz
Source :
Biochimica et biophysica acta. 1818(12)
Publication Year :
2012

Abstract

Nanodiscs (NDs) enable the analysis of membrane proteins (MP) in natural lipid bilayer environments. In combination with cell-free (CF) expression, they could be used for the co-translational insertion of MPs into defined membranes. This new approach allows the characterization of MPs without detergent contact and it could help to identify effects of particular lipids on catalytic activities. Association of MPs with different ND types, quality of the resulting MP/ND complexes as well as optimization parameters are still poorly analyzed. This study describes procedures to systematically improve CF expression protocols for the production of high quality MP/ND complexes. In order to reveal target dependent variations, the co-translational ND complex formation with the bacterial proton pump proteorhodopsin (PR), with the small multidrug resistance transporters SugE and EmrE, as well as with the Escherichia coli MraY translocase was studied. Parameters which modulate the efficiency of MP/ND complex formation have been identified and in particular effects of different lipid compositions of the ND membranes have been analyzed. Recorded force distance pattern as well as characteristic photocycle dynamics indicated the integration of functionally folded PR into NDs. Efficient complex formation of the E. coli MraY translocase was dependent on the ND size and on the lipid composition of the ND membranes. Active MraY protein could only be obtained with ND containing anionic lipids, thus providing new details for the in vitro analysis of this pharmaceutically important protein.

Details

ISSN :
00063002
Volume :
1818
Issue :
12
Database :
OpenAIRE
Journal :
Biochimica et biophysica acta
Accession number :
edsair.doi.dedup.....f75b4e0b563955c6d84e6d322d1b7889