Back to Search
Start Over
A highly sensitive label-free electrochemical immunosensor based on an aligned GaN nanowires array/polydopamine heterointerface modified with Au nanoparticles
- Source :
- Journal of Materials Chemistry B. 7:1442-1449
- Publication Year :
- 2019
- Publisher :
- Royal Society of Chemistry (RSC), 2019.
-
Abstract
- Aligned GaN nanowire arrays show great potential not only in optoelectronic devices, but also in sensitive biosensor applications, owing to their excellent chemical stability and biocompatibility, as well as high electron mobility and surface-to-volume ratio. However, to construct electrochemical immunosensors, proper surface modification of GaN nanowires, which can enable efficient charge transfer and provide large densities of immobilization sites for antibodies to anchor, is still challenging. Herein we demonstrate a highly sensitive label-free electrochemical immunosensing platform based on the integration of polydopamine (PDA) on a GaN nanowire surface. The PDA polymer was self-assembled on GaN nanowire surfaces via organic polymerization. The interface dipole layer generated at the GaN nanowire array/PDA polymer heterointerface enabled efficient charge transfer. The aligned GaN nanowire array/PDA hybrids were further modified with gold nanoparticles for subsequent covalent binding of antibodies. The fabricated immunosensor yielded a wide linear range between 0.01 and 100 ng ml-1 and a detection limit as low as 0.003 ng ml-1 for the detection of alpha-fetoprotein (AFP). The immunosensor showed good selectivity, reproducibility, and stability and was utilized in human serum samples for AFP detection. This work demonstrates the superiority of taking advantage of a nanowire array configuration and a semiconductor/polymer heterointerface in an immunosensing platform for sensitivity enhancement.
- Subjects :
- Indoles
Materials science
Polymers
Biomedical Engineering
Nanowire
Metal Nanoparticles
Nanoparticle
Gallium
Nanotechnology
02 engineering and technology
010402 general chemistry
01 natural sciences
Limit of Detection
Humans
General Materials Science
Electrodes
Immunoassay
chemistry.chemical_classification
Nanowires
business.industry
Reproducibility of Results
Electrochemical Techniques
General Chemistry
General Medicine
Polymer
021001 nanoscience & nanotechnology
0104 chemical sciences
Semiconductor
chemistry
Colloidal gold
Electrode
Surface modification
Gold
alpha-Fetoproteins
0210 nano-technology
business
Antibodies, Immobilized
Biosensor
Subjects
Details
- ISSN :
- 20507518 and 2050750X
- Volume :
- 7
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Chemistry B
- Accession number :
- edsair.doi.dedup.....f732e92ad1e8eaed3cbb92755a924d3c
- Full Text :
- https://doi.org/10.1039/c8tb03233e