Back to Search Start Over

At the very beginning of life on Earth: the thiol-rich peptide (TRP) world hypothesis

Authors :
Anne Milet
Ibrahim Shalayel
K. V. Raghavendra Rao
Kieu Dung Ly
Yannick Vallée
Gaël De Paëpe
Katharina Märker
Département de Chimie Moléculaire - Synthèse Et Réactivité en Chimie Organique (DCM - SeRCO )
Département de Chimie Moléculaire (DCM)
Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Magnetic Resonance (RM )
Modélisation et Exploration des Matériaux (MEM)
Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Département de Chimie Moléculaire - Chimie Inorganique Redox (DCM - CIRE )
ANR-11-LABX-0003,ARCANE,Grenoble, une chimie bio-motivée(2011)
Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Département de Chimie Moléculaire - Chimie Inorganique Redox Biomimétique (DCM - CIRE )
Source :
International Journal of Developmental Biology, International Journal of Developmental Biology, 2017, 61 (8-9), pp.471-478. ⟨10.1387/ijdb.170028yv⟩, International Journal of Developmental Biology, University of the Basque Country Press, 2017, 61 (8-9), pp.471-478. ⟨10.1387/ijdb.170028yv⟩
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

Life developed on Earth probably about 3.8 billion years ago, on a planet that was already largely covered by oceans and where the atmosphere was very humid. The reactions, which may have led to the formation of the first polymers, particularly to the first peptides and nucleic acids, must have been compatible with these conditions. This is the case of the reaction of nitriles with aminothiols, such as cysteine and homocysteine. Since aminonitriles are the probable precursors of amino acids, this condensation reaction has been able to rapidly yield dipeptides, tripeptides, oligomers and even true polymers, each containing thiol functions. These thiol-rich peptides (TRP's) would then have assumed the various catalytic roles that the peptides containing cysteine residues play today. They allowed a rapid bloom of life in the primitive ocean. In this scenario, RNA's are not the first polymers, but have been synthesized, like DNA's, thanks to the catalytic properties of thiols in a mostly TRP world. In this world, due to its ability to form a thiolactone, homocysteine may have played the leading role in enabling the previously formed oligomers to be stappled together, thus accelerating the formation of long peptide chains.

Details

Language :
English
ISSN :
02146282
Database :
OpenAIRE
Journal :
International Journal of Developmental Biology, International Journal of Developmental Biology, 2017, 61 (8-9), pp.471-478. ⟨10.1387/ijdb.170028yv⟩, International Journal of Developmental Biology, University of the Basque Country Press, 2017, 61 (8-9), pp.471-478. ⟨10.1387/ijdb.170028yv⟩
Accession number :
edsair.doi.dedup.....f70e3f5ab5eccf24c83f73a267647b0e
Full Text :
https://doi.org/10.1387/ijdb.170028yv⟩