Back to Search
Start Over
Geodesic rigidity of Levi-Civita connections admitting essential projective vector fields
- Source :
- Geometriae Dedicata. 205:147-166
- Publication Year :
- 2019
- Publisher :
- Springer Science and Business Media LLC, 2019.
-
Abstract
- In this paper, it is proved that a connected 3-dimensional Riemannian manifold or a closed connected semi-Riemannian manifold $$M^n$$ ($$n>1$$) admitting a projective vector field with a non-linearizable singularity is projectively flat.
- Subjects :
- Mathematics - Differential Geometry
Pure mathematics
Geodesic
010102 general mathematics
53A20
Riemannian manifold
01 natural sciences
Manifold
Singularity
Differential Geometry (math.DG)
Differential geometry
Projective vector field
0103 physical sciences
FOS: Mathematics
Vector field
Mathematics::Differential Geometry
010307 mathematical physics
Geometry and Topology
0101 mathematics
Mathematics::Symplectic Geometry
Projective geometry
Mathematics
Subjects
Details
- ISSN :
- 15729168 and 00465755
- Volume :
- 205
- Database :
- OpenAIRE
- Journal :
- Geometriae Dedicata
- Accession number :
- edsair.doi.dedup.....f6fe1c9ce4e816cd06113f3c5fcf3900
- Full Text :
- https://doi.org/10.1007/s10711-019-00469-7