Back to Search Start Over

A generalized Noether theorem for scaling symmetry

Authors :
Peter A. Horvathy
M. Elbistan
P. M. Zhang
Piotr Kosinski
Fédération de recherche Denis Poisson (FDP)
Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Institut Denis Poisson (IDP)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO)
Source :
Eur.Phys.J.Plus, Eur.Phys.J.Plus, 2020, 135 (2), pp.223. ⟨10.1140/epjp/s13360-020-00247-5⟩
Publication Year :
2019
Publisher :
arXiv, 2019.

Abstract

The recently discovered conserved quantity associated with Kepler rescaling is generalised by an extension of Noether's theorem which involves the classical action integral as an additional term. For a free particle the familiar Schroedinger dilations are recovered. A general pattern arises for homogeneous potentials. The associated conserved quantity allows us to derive the virial theorem. The relation to the Bargmann framework is explained and illustrated by exact plane gravitational waves.<br />Comment: Extended version. 18 pages, 3 figures. Published version

Details

Database :
OpenAIRE
Journal :
Eur.Phys.J.Plus, Eur.Phys.J.Plus, 2020, 135 (2), pp.223. ⟨10.1140/epjp/s13360-020-00247-5⟩
Accession number :
edsair.doi.dedup.....f6f0d4ba07b963b5a92200175142665a
Full Text :
https://doi.org/10.48550/arxiv.1903.05070