Back to Search Start Over

Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair

Authors :
David G. Barker
Erik Limpens
Joëlle Fournier
Mireille Chabaud
Sergey Ivanov
Andrea Genre
Alice Teillet
Fernanda de Carvalho-Niebel
Laboratoire des interactions plantes micro-organismes (LIPM)
Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)
Wageningen University and Research Centre (WUR)
Universita di Torino
French National Research Agency [ANR-08-BLAN-0029-01]
Partenariat Hubert Curien Galilee [30111WJ]
French National Laboratoire d'Excellence TULIP initiative [ANR-10-LABX-41]
Wageningen University and Research [Wageningen] (WUR)
University of Turin
The Partenariat Hubert Curien Galilee (grant no. 30111WJ to A.G. and D.G.B.)
ANR-08-BLAN-0029,SYMDYNAMICS,Mécanismes d'accommodation endosymbiotique chez les végétaux: Dynamique intracellulaire et signalisation calcique(2008)
ANR-10-LABX-0041,TULIP,Towards a Unified theory of biotic Interactions: the roLe of environmental(2010)
Source :
Plant Physiology 167 (2015) 4, Plant Physiology, Plant Physiology, American Society of Plant Biologists, 2015, 167 (4), pp.1233-1242. ⟨10.1104/pp.114.253302⟩, Plant Physiology, 167(4), 1233-1242
Publication Year :
2015

Abstract

International audience; In many legumes, root entry of symbiotic nitrogen-fixing rhizobia occurs via host-constructed tubular tip-growing structures known as infection threads (ITs). Here, we have used a confocal microscopy live-tissue imaging approach to investigate early stages of IT formation in Medicago truncatula root hairs (RHs) expressing fluorescent protein fusion reporters. This has revealed that ITs only initiate 10 to 20 h after the completion of RH curling, by which time major modifications have occurred within the so-called infection chamber, the site of bacterial entrapment. These include the accumulation of exocytosis (M. truncatula Vesicle-Associated Membrane Protein721e)- and cell wall (M. truncatula EARLY NODULIN11)-associated markers, concomitant with radial expansion of the chamber. Significantly, the infection-defective M. truncatula nodule inception-1 mutant is unable to create a functional infection chamber. This underlines the importance of the NIN-dependent phase of host cell wall remodeling that accompanies bacterial proliferation and precedes IT formation, and leads us to propose a two-step model for rhizobial infection initiation in legume RHs.

Details

Language :
English
ISSN :
00320889 and 15322548
Database :
OpenAIRE
Journal :
Plant Physiology 167 (2015) 4, Plant Physiology, Plant Physiology, American Society of Plant Biologists, 2015, 167 (4), pp.1233-1242. ⟨10.1104/pp.114.253302⟩, Plant Physiology, 167(4), 1233-1242
Accession number :
edsair.doi.dedup.....f6e984798e10af047449b17f89d4fd86
Full Text :
https://doi.org/10.1104/pp.114.253302⟩