Back to Search Start Over

A Modified Nucleoside 6-thio-2’-deoxyguanosine Exhibits Anti-tumor Activity in Gliomas

Authors :
Stephen T. Keir
Seethalakshmi Hariharan
Utz Herbig
David M. Ashley
Gao Zhang
Hao Liu
Jerry W. Shay
Themistoklis Vasilopoulos
Michelle L. Bowie
Keith T. Flaherty
Kyle M. Walsh
Di Wu
Marilyne Labrie
Matthew S. Waitkus
Zhi Wei
Yiling Lu
Edward Pan
Eric Sugarman
Meng Tian
Shiyou Wei
Silvia Siteni
Roger E. McLendon
Lunxu Liu
Yaohui Chen
Meenhard Herlyn
Casey M. Charbonneau
Kuang Du
Milan R. Savani
Zachary J. Reitman
Gordon B. Mills
Xiang Lin
Kongming Wu
Shengnan Yu
Yin Ku
Ilgen Mender
Wen Jiang
Kalil G. Abdullah
Mustafa Khasraw
Source :
Clin Cancer Res
Publication Year :
2021

Abstract

Purpose: To investigate the therapeutic role of a novel telomere-directed inhibitor, 6-thio-2′-deoxyguanosine (THIO) in gliomas both in vitro and in vivo. Experimental Design: A panel of human and mouse glioma cell lines was used to test therapeutic efficacy of THIO using cell viability assays, flow cytometric analyses, and immunofluorescence. Integrated analyses of RNA sequencing and reverse-phase protein array data revealed the potential antitumor mechanisms of THIO. Four patient-derived xenografts (PDX), two patient-derived organoids (PDO), and two xenografts of human glioma cell lines were used to further investigate the therapeutic efficacy of THIO. Results: THIO was effective in the majority of human and mouse glioma cell lines with no obvious toxicity against normal astrocytes. THIO as a monotherapy demonstrated efficacy in three glioma cell lines that had acquired resistance to temozolomide. In addition, THIO showed efficacy in four human glioma cell lines grown as neurospheres by inducing apoptotic cell death. Mechanistically, THIO induced telomeric DNA damage not only in glioma cell lines but also in PDX tumor specimens. Integrated computational analyses of transcriptomic and proteomic data indicated that THIO significantly inhibited cell invasion, stem cell, and proliferation pathways while triggering DNA damage and apoptosis. Importantly, THIO significantly decreased tumor proliferation in two PDO models and reduced the tumor size of a glioblastoma xenograft and a PDX model. Conclusions: The current study established the therapeutic role of THIO in primary and recurrent gliomas and revealed the acute induction of telomeric DNA damage as a primary antitumor mechanism of THIO in gliomas.

Details

Language :
English
Database :
OpenAIRE
Journal :
Clin Cancer Res
Accession number :
edsair.doi.dedup.....f6aee3a60fc3803eb740dc2c3bb2bb99