Back to Search Start Over

Traces of Trauma: A Multivariate Pattern Analysis of Childhood Trauma, Brain Structure, and Clinical Phenotypes

Authors :
David Popovic
Anne Ruef
Dominic B. Dwyer
Linda A. Antonucci
Julia Eder
Rachele Sanfelici
Lana Kambeitz-Ilankovic
Omer Faruk Oztuerk
Mark S. Dong
Riya Paul
Marco Paolini
Dennis Hedderich
Theresa Haidl
Joseph Kambeitz
Stephan Ruhrmann
Katharine Chisholm
Frauke Schultze-Lutter
Peter Falkai
Giulio Pergola
Giuseppe Blasi
Alessandro Bertolino
Rebekka Lencer
Udo Dannlowski
Rachel Upthegrove
Raimo K.R. Salokangas
Christos Pantelis
Eva Meisenzahl
Stephen J. Wood
Paolo Brambilla
Stefan Borgwardt
Nikolaos Koutsouleris
Mark Sen Dong
Anne Erkens
Eva Gussmann
Shalaila Haas
Alkomiet Hasan
Claudius Hoff
Ifrah Khanyaree
Aylin Melo
Susanna Muckenhuber-Sternbauer
Janis Köhler
Ömer Faruk Öztürk
Nora Penzel
Adrian Rangnick
Sebastian von Saldern
Moritz Spangemacher
Ana Tupac
Maria Fernanda Urquijo
Johanna Weiske
Julian Wenzel
Antonia Wosgien
Linda Betz
Karsten Blume
Mauro Seves
Nathalie Kaiser
Thorsten Lichtenstein
Christiane Woopen
Christina Andreou
Laura Egloff
Fabienne Harrisberger
Claudia Lenz
Letizia Leanza
Amatya Mackintosh
Renata Smieskova
Erich Studerus
Anna Walter
Sonja Widmayer
Chris Day
Sian Lowri Griffiths
Mariam Iqbal
Mirabel Pelton
Pavan Mallikarjun
Alexandra Stainton
Ashleigh Lin
Alexander Denissoff
Anu Ellilä
Tiina From
Markus Heinimaa
Tuula Ilonen
Päivi Jalo
Heikki Laurikainen
Maarit Lehtinen
Antti Luutonen
Akseli Mäkela
Janina Paju
Henri Pesonen
Reetta-Liina Armio (Säilä
Elina Sormunen
Anna Toivonen
Otto Turtonen
Ana Beatriz Solana
Manuela Abraham
Nicolas Hehn
Timo Schirmer
Carlo Altamura
Marika Belleri
Francesca Bottinelli
Adele Ferro
Marta Re
Emiliano Monzani
Mauro Percudani
Maurizio Sberna
Armando D’Agostino
Lorenzo Del Fabro
Giampaolo Perna
Maria Nobile
Alessandra Alciati
Matteo Balestrieri
Carolina Bonivento
Giuseppe Cabras
Franco Fabbro
Marco Garzitto
Sara Piccin
Source :
Biological Psychiatry. 88:829-842
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Background Childhood trauma (CT) is a major yet elusive psychiatric risk factor, whose multidimensional conceptualization and heterogeneous effects on brain morphology might demand advanced mathematical modeling. Therefore, we present an unsupervised machine learning approach to characterize the clinical and neuroanatomical complexity of CT in a larger, transdiagnostic context. Methods We used a multicenter European cohort of 1076 female and male individuals (discovery: n = 649; replication: n = 427) comprising young, minimally medicated patients with clinical high-risk states for psychosis; patients with recent-onset depression or psychosis; and healthy volunteers. We employed multivariate sparse partial least squares analysis to detect parsimonious associations between combinations of items from the Childhood Trauma Questionnaire and gray matter volume and tested their generalizability via nested cross-validation as well as via external validation. We investigated the associations of these CT signatures with state (functioning, depressivity, quality of life), trait (personality), and sociodemographic levels. Results We discovered signatures of age-dependent sexual abuse and sex-dependent physical and sexual abuse, as well as emotional trauma, which projected onto gray matter volume patterns in prefronto-cerebellar, limbic, and sensory networks. These signatures were associated with predominantly impaired clinical state- and trait-level phenotypes, while pointing toward an interaction between sexual abuse, age, urbanicity, and education. We validated the clinical profiles for all three CT signatures in the replication sample. Conclusions Our results suggest distinct multilayered associations between partially age- and sex-dependent patterns of CT, distributed neuroanatomical networks, and clinical profiles. Hence, our study highlights how machine learning approaches can shape future, more fine-grained CT research.

Details

ISSN :
00063223
Volume :
88
Database :
OpenAIRE
Journal :
Biological Psychiatry
Accession number :
edsair.doi.dedup.....f6a5ada49d09634e7961eded44fb0af4
Full Text :
https://doi.org/10.1016/j.biopsych.2020.05.020