Back to Search
Start Over
Dietary protein intake impacts human skeletal muscle protein fractional synthetic rates after endurance exercise
- Source :
- American journal of physiology. Endocrinology and metabolism. 289(4)
- Publication Year :
- 2005
-
Abstract
- This investigation evaluated the physiological impact of different dietary protein intakes on skeletal muscle protein synthesis postexercise in endurance runners. Five endurance-trained, male runners participated in a randomized, crossover design diet intervention, where they consumed either a low (0.8 g/kg; LP)-, moderate (1.8 g/kg; MP)-, or high (3.6 g/kg; HP)-protein diet for 4 wk. Diets were designed to be eucaloric with carbohydrate, fat, and protein approximating 60, 30, and 10%; 55, 30, and 15%; and 40, 30, and 30% for LP, MP, and HP, respectively. Substrate oxidation was assessed via indirect calorimetry at 3 wk of the dietary interventions. Mixed-muscle protein fractional synthetic rate (FSR) was measured after an endurance run (75 min at 70% V̇o2 peak) using a primed, continuous infusion of [2H5]phenylalanine. Protein oxidation increased with increasing protein intake, with each trial being significantly different from the other ( P < 0.01). FSR after exercise was significantly greater for LP (0.083%/h) and MP (0.078%/h) than for HP (0.052%/h; P < 0.05). There was no difference in FSR between LP and MP. This is the first investigation to establish that habitual dietary protein intake in humans modulates skeletal muscle protein synthesis after an endurance exercise bout. Future studies directed at mechanisms by which level of protein intake influences skeletal muscle turnover are needed.
- Subjects :
- Adult
Male
medicine.medical_specialty
Physiology
Metabolic Clearance Rate
Endocrinology, Diabetes and Metabolism
Muscle Proteins
Physical exercise
Fractional synthetic rate
Eating
Endurance training
Physiology (medical)
Internal medicine
Metabolic clearance rate
medicine
Diet, Protein-Restricted
Humans
Muscle, Skeletal
Cross-Over Studies
Chemistry
Skeletal muscle
Dietary protein
Endocrinology
medicine.anatomical_structure
Gene Expression Regulation
Physical Endurance
Dietary Proteins
Dietary protein intake
Muscle Contraction
Subjects
Details
- ISSN :
- 01931849
- Volume :
- 289
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- American journal of physiology. Endocrinology and metabolism
- Accession number :
- edsair.doi.dedup.....f62b9588980fe77dde31ee4c90abb3ac