Back to Search Start Over

Using self-organizing maps to investigate spatial patterns of non-native species

Authors :
Sylvain Mastrorillo
Régis Céréghino
Frédéric Santoul
Arthur Compin
Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB)
Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut Ecologie et Environnement (INEE)
Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
Source :
Biological Conservation, Biological Conservation, Elsevier, 2005, 125, pp.459-465
Publication Year :
2005
Publisher :
HAL CCSD, 2005.

Abstract

Our ability to demonstrate statistical patterns of invasion by non-native species will determine the success of future management projects. We investigated the suitability of self-organizing maps (SOM, neural network) for patterning habitat invasion by exotic fish species at the regional scale (Southwest France), using a binary dataset of species occurrences. The SOM visualization can be used as an analytical tool to bring out relationships between sample locations and biological variables, but in addition the weight of each species in the output of the SOM can be interpreted as its occurrence probability in various geographic areas. After training the SOM with fish presence/absence data, the k-means algorithm helped to derive three major clusters of sites (headwater, montane, and plain areas). Each cluster was divided into two subsets of sites according to non-native fish, because assemblage compositions delineated different geological areas: Pyrenees Mountains, Massif Central Mountains, and alluvial plain. Occurrence probabilities of species within our study stream system were roughly influenced by river typology, with a higher occurrence probability for most species (i.e. a greater risk) in downstream sections. Conversely, headwater streams at the highest elevations in the study area showed the lowest risk of invasion. Efficient analytical tools such as SOM may thus help to yield explicit schemes that could influence the measures to be taken in the latter phase of conservation plans.

Details

Language :
English
ISSN :
00063207
Database :
OpenAIRE
Journal :
Biological Conservation, Biological Conservation, Elsevier, 2005, 125, pp.459-465
Accession number :
edsair.doi.dedup.....f5f95c06e40d1f128b57ea3fd7314df3