Back to Search Start Over

Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets

Authors :
V. A. Smalyuk
Richard Town
O. S. Jones
Roberto Mancini
S. H. Glenzer
Nathan Meezan
J. D. Kilkenny
Joseph J. MacFarlane
A. V. Hamza
P. T. Springer
Howard A. Scott
Sean Regan
S. N. Dixit
T. Ma
Melissa Edwards
A. Nikroo
David R. Farley
Joseph Ralph
Otto Landen
R. L. McCrory
S. M. Glenn
T. C. Sangster
K. B. Fournier
Tilo Döppner
G. A. Kyrala
S. W. Haan
Damien Hicks
D. D. Meyerhofer
Debra Callahan
D. K. Bradley
Gilbert Collins
Nobuhiko Izumi
Igor Golovkin
John Kline
H.-S. Park
A. J. Mackinnon
Reuben Epstein
Bruce Remington
B. A. Hammel
M. A. Barrios
L. J. Suter
C. J. Cerjan
Source :
Physical Review Letters. 111
Publication Year :
2013
Publisher :
American Physical Society (APS), 2013.

Abstract

Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. As a result, low neutron yields and hot-spot mix mass between 34(–13,+50) ng and 4000(–2970,+17 160) ng are observed.

Details

ISSN :
10797114 and 00319007
Volume :
111
Database :
OpenAIRE
Journal :
Physical Review Letters
Accession number :
edsair.doi.dedup.....f5a12ebc39048674c0ae9931f9d31a20