Back to Search Start Over

Strengthening the sequential convex MINLP technique by perspective reformulations

Authors :
Claudio Gentile
Claudia D’Ambrosio
Antonio Frangioni
Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Department of Computer Science [Pisa]
University of Pisa - Università di Pisa
Istituto di Analisi dei Sistemi ed Informatica 'A. Ruberti'
Istituto di Analisi dei Sistemi ed Informatica 'Antonio Ruberti' [Roma] (IASI)
Consiglio Nazionale delle Ricerche (CNR)-Consiglio Nazionale delle Ricerche (CNR)
Source :
Optimization Letters 13 (2019): 673–684. doi:10.1007/s11590-018-1360-9, info:cnr-pdr/source/autori:D'Ambrosio C.; Frangioni A.; Gentile C./titolo:Strengthening the sequential convex MINLP technique by perspective reformulations/doi:10.1007%2Fs11590-018-1360-9/rivista:Optimization Letters/anno:2019/pagina_da:673/pagina_a:684/intervallo_pagine:673–684/volume:13, Optimization Letters, Optimization Letters, Springer Verlag, 2019, 13 (4), pp.673-684. ⟨10.1007/s11590-018-1360-9⟩
Publication Year :
2019
Publisher :
SPRINGER HEIDELBERG, GERMANY, 2019.

Abstract

The sequential convex MINLP (SC-MINLP) technique is a solution method for nonconvex mixed-integer nonlinear problems (MINLPs) where the nonconvexities are separable. It is based on solving a sequence of convex MINLPs which trade a better and better relaxation of the nonconvex part of the problem with the introduction of more and more piecewise-linear nonconvex terms, and therefore binary variables. The convex MINLPs are obtained by partitioning the domain of each separable nonconvex term in the intervals in which it is convex and those in which it is concave. In the former, the term is left in its original form, while in the latter it is piecewise-linearized. Since each interval corresponds to a semi-continuous variable, we propose to modify the convex terms using the Perspective Reformulation technique to strengthen the bounds. We show by means of experimental results on different classes of instances that doing so significantly decreases the solution time of the convex MINLPs, which is the most time consuming part of the approach, and has therefore the potential to improving the overall effectiveness of SC-MINLP.

Details

Language :
English
ISSN :
18624472 and 18624480
Database :
OpenAIRE
Journal :
Optimization Letters 13 (2019): 673–684. doi:10.1007/s11590-018-1360-9, info:cnr-pdr/source/autori:D'Ambrosio C.; Frangioni A.; Gentile C./titolo:Strengthening the sequential convex MINLP technique by perspective reformulations/doi:10.1007%2Fs11590-018-1360-9/rivista:Optimization Letters/anno:2019/pagina_da:673/pagina_a:684/intervallo_pagine:673–684/volume:13, Optimization Letters, Optimization Letters, Springer Verlag, 2019, 13 (4), pp.673-684. ⟨10.1007/s11590-018-1360-9⟩
Accession number :
edsair.doi.dedup.....f591468315b87a652630e69fbc03d226
Full Text :
https://doi.org/10.1007/s11590-018-1360-9