Back to Search Start Over

Coexisting crystal and liquid-like properties in a 2D long-range self-consistent model

Authors :
Marie-Christine Firpo
M. A. Amato
J. M. Maciel
Laboratoire de Physique des Plasmas (LPP)
Université Paris-Saclay-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École polytechnique (X)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Source :
Scientific Reports, Scientific Reports, Nature Publishing Group, 2018, 8 (1), ⟨10.1038/s41598-018-33889-8⟩, Scientific Reports, Vol 8, Iss 1, Pp 1-10 (2018), Repositório Institucional da UnB, Universidade de Brasília (UnB), instacron:UNB
Publication Year :
2018
Publisher :
Nature Publishing Group UK, 2018.

Abstract

A two-dimensional class of mean-field models serving as a minimal frame to study long-range interaction in two space dimensions is considered. In the case of an anisotropic mixed attractive-repulsive interaction, an initially spatially homogeneous cold fluid is dynamically unstable and evolves towards a quasi-stationary state in which the less energetic particles get trapped into clusters forming a Bravais-like lattice, mimicking a crystalline state. Superimposed to this, one observes in symplectic numerical simulations a flux of slightly more energetic particles channeling through this crystalline background. The resultant system combines the rigidity features of a solid, as particles from a displaced core are shown to snap back into place after a transient, and the dynamical diffusive features of a liquid for the fraction of channeling and free particles. The combination of solid and liquid properties is numerically observed here within the classical context. The quantum transposition of the model may be experimentally reached using the latest ultracold atoms techniques to generate long-range interactions.

Details

Language :
English
ISSN :
20452322
Volume :
8
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....f57ee1ecd32bdc72f6bb6e3ee1447ed2
Full Text :
https://doi.org/10.1038/s41598-018-33889-8⟩