Back to Search Start Over

ADDITIVE ENERGY OF DENSE SETS OF PRIMES AND MONOCHROMATIC SUMS

Authors :
Olivier Ramaré
D. S. Ramana
Centre National de la Recherche Scientifique (CNRS)
Laboratoire Paul Painlevé - UMR 8524 (LPP)
Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Paul Painlevé (LPP)
Source :
Israël Journal of Mathematics, Israël Journal of Mathematics, Hebrew University Magnes Press, 2014, 199, pp.955-974, Israel Journal of Mathematics, Israel Journal of Mathematics, 2014, 199, pp.955-974
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

International audience; When $K \ge 1$ is an integer and $S$ is a set of prime numbers in the interval $(N/2 , N ]$ with $|S| \ge\pi^* (N)/K$, where $\pi^* (N)$ is the number of primes in this interval, we obtain an upper bound for the additive energy of $S$, which is the number of quadruples $(x_1 , x_2 , x_3 , x_4)$ in $S^4$ satisfying $x_1 + x_2 = x_3 + x_4$. We obtain this bound by a variant of a method of Ramaré and I. Ruzsa. Taken together with an argument due to N. Hegyvári and F. Hennecart this bound implies that when the sequence of prime numbers is coloured with $K$ colours, every sufficiently large integer can be written as a sum of no more than $CK \log \log 4K$ prime numbers, all of the same colour, where $C$ is an absolute constant. This assertion is optimal upto the value of C and answers a question of A. Sárközy.

Details

Language :
English
ISSN :
00212172 and 15658511
Database :
OpenAIRE
Journal :
Israël Journal of Mathematics, Israël Journal of Mathematics, Hebrew University Magnes Press, 2014, 199, pp.955-974, Israel Journal of Mathematics, Israel Journal of Mathematics, 2014, 199, pp.955-974
Accession number :
edsair.doi.dedup.....f5672a866dacdf8cc9287f75405697a5