Back to Search Start Over

Small moving target MOT tracking with GM-PHD filter and attention-based CNN

Authors :
Josiane Zerubia
Camilo Aguilar
Mathias Ortner
Télédetection et IA embarqués pour le 'New Space' (AYANA)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Côte d'Azur (UCA)
Airbus Defence and Space [Toulouse]
ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
Source :
IEEE international workshop on machine learning for signal processing (MLSP 2021), IEEE international workshop on machine learning for signal processing (MLSP 2021), Oct 2021, Gold Coast / Virtual, Australia, MLSP, MLSP 2021-IEEE international workshop on machine learning for signal processing, MLSP 2021-IEEE international workshop on machine learning for signal processing, Oct 2021, Gold Coast / Virtual, Australia. ⟨10.1109/MLSP52302.2021.9596204⟩, HAL
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; We present a multi-object tracking (MOT) approach to track small moving targets in satellite images. Our objects of interest span few pixels, do not present a defined texture, and are easily lost in cluttered environments. We propose a patchbased convolutional neural network (CNN) that focuses on specific regions to detect and discriminate nearby small objects. We use the object motion information to drive the patch selection and detect objects using a region-based CNN. In addition, we present a direct MOT data-association approach by using an improved Gaussian mixture-probability hypothesis density (GM-PHD) filter. The GM-PHD filter offers an efficient yet robust MOT formulation that takes into account clutter, misdetection, and target appearance and disappearance. We are able to detect and track blob-like moving objects and demonstrate an improvement over competing state-of-the-art tracking approaches.

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE international workshop on machine learning for signal processing (MLSP 2021), IEEE international workshop on machine learning for signal processing (MLSP 2021), Oct 2021, Gold Coast / Virtual, Australia, MLSP, MLSP 2021-IEEE international workshop on machine learning for signal processing, MLSP 2021-IEEE international workshop on machine learning for signal processing, Oct 2021, Gold Coast / Virtual, Australia. ⟨10.1109/MLSP52302.2021.9596204⟩, HAL
Accession number :
edsair.doi.dedup.....f562a656818f242afa98a4a1f27350cb
Full Text :
https://doi.org/10.1109/MLSP52302.2021.9596204⟩