Back to Search Start Over

SOLES I: The Spin–Orbit Alignment of K2-140 b

Authors :
Howard Isaacson
Fei Dai
Malena Rice
Corey Beard
Casey Brinkman
Songhu Wang
Xian-Yu Wang
Andrew W. Howard
Ryan A. Rubenzahl
Gregory Laughlin
Aida Behmard
Publication Year :
2021
Publisher :
American Astronomical Society, 2021.

Abstract

Obliquity measurements for stars hosting relatively long-period giant planets with weak star-planet tidal interactions may play a key role in distinguishing between formation theories for shorter-period hot Jupiters. Few such obliquity measurements have been made to date due to the relatively small sample of known wide-orbiting, transiting Jovian-mass planets and the challenging nature of these targets, which tend to have long transit durations and orbit faint stars. We report a measurement of the Rossiter–McLaughlin effect across the transit of K2-140 b, a Jupiter-mass planet with period P = 6.57 days orbiting a V = 12.6 star. We find that K2-140 is an aligned system with projected spin–orbit angle λ = 0.5° ± 9.7°, suggesting a dynamically cool formation history. This observation builds toward a population of tidally detached giant planet spin–orbit angles that will enable a direct comparison with the distribution of close-orbiting hot-Jupiter orbital configurations, elucidating the prevalent formation mechanisms of each group.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....f551da8f9a542ed1498ee2621acbec0e