Back to Search Start Over

Shear-strain and shear-stress fluctuations in generalized Gaussian ensemble simulations of isotropic elastic networks

Authors :
Jörg Baschnagel
J. P. Wittmer
Ivan Kriuchevskyi
Hong Xu
Institut Charles Sadron (ICS)
Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Matériaux et nanosciences d'Alsace (FMNGE)
Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Chimie et Physique - Approche Multi-échelle des Milieux Complexes (LCP-A2MC)
Université de Lorraine (UL)
Source :
The European Physical Journal B: Condensed Matter and Complex Systems, The European Physical Journal B: Condensed Matter and Complex Systems, Springer-Verlag, 2015, 88 (9), ⟨10.1140/epjb/e2015-60506-6⟩
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

Shear-strain and shear-stress correlations in isotropic elastic bodies are investigated both theoretically and numerically at either imposed mean shear-stress $\tau$ ($\lambda=0$) or shear-strain $\gamma$ ($\lambda=1$) and for more general values of a dimensionless parameter $\lambda$ characterizing the generalized Gaussian ensemble. It allows to tune the strain fluctuations $\mu_{\gamma\gamma} \equiv \beta V \la \delta \gamma^2 \ra = (1-\lambda)/G_{eq}$ with $\beta$ being the inverse temperature, $V$ the volume, $\gamma$ the instantaneous strain and $G_{eq}$ the equilibrium shear modulus. Focusing on spring networks in two dimensions we show, e.g., for the stress fluctuations $\mu_{\tau\tau} \equiv \beta V \la \delta\tau^2 \ra$ ($\tau$ being the instantaneous stress) that $\mu_{\tau\tau} = \mu_{A} - \lambda G_{eq}$ with $\mu_{A} = \mu_{\tau\tau}|_{\lambda=0}$ being the affine shear-elasticity. For the stress autocorrelation function $c_{\tau\tau}(t) \equiv \beta V \la \delta \tau(t) \delta \tau(0) \ra$ this result is then seen (assuming a sufficiently slow shear-stress barostat) to generalize to $c_{\tau\tau}(t) = G(t) - \lambda \Geq$ with $G(t)$ being the shear-stress relaxation modulus.<br />Comment: 17 pages, 15 figures

Details

ISSN :
14346036 and 14346028
Volume :
88
Database :
OpenAIRE
Journal :
The European Physical Journal B
Accession number :
edsair.doi.dedup.....f542f15b6c2a1035c6409ce15b40000a