Back to Search
Start Over
Shear-strain and shear-stress fluctuations in generalized Gaussian ensemble simulations of isotropic elastic networks
- Source :
- The European Physical Journal B: Condensed Matter and Complex Systems, The European Physical Journal B: Condensed Matter and Complex Systems, Springer-Verlag, 2015, 88 (9), ⟨10.1140/epjb/e2015-60506-6⟩
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- Shear-strain and shear-stress correlations in isotropic elastic bodies are investigated both theoretically and numerically at either imposed mean shear-stress $\tau$ ($\lambda=0$) or shear-strain $\gamma$ ($\lambda=1$) and for more general values of a dimensionless parameter $\lambda$ characterizing the generalized Gaussian ensemble. It allows to tune the strain fluctuations $\mu_{\gamma\gamma} \equiv \beta V \la \delta \gamma^2 \ra = (1-\lambda)/G_{eq}$ with $\beta$ being the inverse temperature, $V$ the volume, $\gamma$ the instantaneous strain and $G_{eq}$ the equilibrium shear modulus. Focusing on spring networks in two dimensions we show, e.g., for the stress fluctuations $\mu_{\tau\tau} \equiv \beta V \la \delta\tau^2 \ra$ ($\tau$ being the instantaneous stress) that $\mu_{\tau\tau} = \mu_{A} - \lambda G_{eq}$ with $\mu_{A} = \mu_{\tau\tau}|_{\lambda=0}$ being the affine shear-elasticity. For the stress autocorrelation function $c_{\tau\tau}(t) \equiv \beta V \la \delta \tau(t) \delta \tau(0) \ra$ this result is then seen (assuming a sufficiently slow shear-stress barostat) to generalize to $c_{\tau\tau}(t) = G(t) - \lambda \Geq$ with $G(t)$ being the shear-stress relaxation modulus.<br />Comment: 17 pages, 15 figures
- Subjects :
- Physics
Statistical Mechanics (cond-mat.stat-mech)
Gaussian
Isotropy
FOS: Physical sciences
Inverse temperature
Condensed Matter Physics
Lambda
01 natural sciences
010305 fluids & plasmas
Electronic, Optical and Magnetic Materials
Condensed Matter::Soft Condensed Matter
Physics::Fluid Dynamics
Shear modulus
symbols.namesake
0103 physical sciences
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
symbols
Shear stress
Beta (velocity)
Constants
010306 general physics
Condensed Matter - Statistical Mechanics
Mathematical physics
Dimensionless quantity
Subjects
Details
- ISSN :
- 14346036 and 14346028
- Volume :
- 88
- Database :
- OpenAIRE
- Journal :
- The European Physical Journal B
- Accession number :
- edsair.doi.dedup.....f542f15b6c2a1035c6409ce15b40000a