Back to Search
Start Over
Coarse-scale representations and smoothed Wigner transforms
- Source :
- Journal de Mathématiques Pures et Appliquées, Journal de Mathématiques Pures et Appliquées, 2009, 91 (3), pp.296-338. ⟨10.1016/j.matpur.2009.01.001⟩, Journal de Mathématiques Pures et Appliquées, Elsevier, 2009, 91 (3), pp.296-338. ⟨10.1016/j.matpur.2009.01.001⟩
- Publication Year :
- 2008
- Publisher :
- arXiv, 2008.
-
Abstract
- Smoothed Wigner transforms have been used in signal processing, as a regularized version of the Wigner transform, and have been proposed as an alternative to it in the homogenization and / or semiclassical limits of wave equations. We derive explicit, closed formulations for the coarse-scale representation of the action of pseudodifferential operators. The resulting ``smoothed operators'' are in general of infinite order. The formulation of an appropriate framework, resembling the Gelfand-Shilov spaces, is necessary. Similarly we treat the ``smoothed Wigner calculus''. In particular this allows us to reformulate any linear equation, as well as certain nonlinear ones (e.g. Hartree and cubic non-linear Schr\"odinger), as coarse-scale phase-space equations (e.g. smoothed Vlasov), with spatial and spectral resolutions controlled by two free parameters. Finally, it is seen that the smoothed Wigner calculus can be approximated, uniformly on phase-space, by differential operators in the semiclassical regime. This improves the respective weak-topology approximation result for the Wigner calculus.<br />Comment: 58 pages, plain Tex
- Subjects :
- Mathematics(all)
Regularized semiclassical asymptotics
General Mathematics
Semiclassical physics
FOS: Physical sciences
01 natural sciences
symbols.namesake
Mathematics - Analysis of PDEs
Husimi transform
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
regularized semiclassical approximation
0101 mathematics
2000 Mathematics Subject Classification. Primary: 81S30
Secondary: 81Q05, 35R50, 81Q20
Mathematical Physics
Mathematics
Applied Mathematics
010102 general mathematics
Mathematical analysis
Mathematical Physics (math-ph)
Differential operator
Wave equation
010101 applied mathematics
Nonlinear system
Phase space
symbols
Smoothed Wigner transform
Schrödinger's cat
Linear equation
Free parameter
Analysis of PDEs (math.AP)
Subjects
Details
- ISSN :
- 00217824
- Database :
- OpenAIRE
- Journal :
- Journal de Mathématiques Pures et Appliquées, Journal de Mathématiques Pures et Appliquées, 2009, 91 (3), pp.296-338. ⟨10.1016/j.matpur.2009.01.001⟩, Journal de Mathématiques Pures et Appliquées, Elsevier, 2009, 91 (3), pp.296-338. ⟨10.1016/j.matpur.2009.01.001⟩
- Accession number :
- edsair.doi.dedup.....f50bb7e4d9cf6bc92c8eba811bc687c0
- Full Text :
- https://doi.org/10.48550/arxiv.0804.0259