Back to Search Start Over

Coarse-scale representations and smoothed Wigner transforms

Authors :
Agissilaos Athanassoulis
Norbert J. Mauser
Thierry Paul
Nonlinear Analysis for Biology and Geophysical flows (BANG)
Laboratoire Jacques-Louis Lions (LJLL)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Département de Mathématiques et Applications - ENS Paris (DMA)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Wolfgang Pauli Institute (WPI)
University of Vienna [Vienna]
Institut CNRS-PAULI (ICP)
INST WOLFGANG PAULI-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS Paris)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Source :
Journal de Mathématiques Pures et Appliquées, Journal de Mathématiques Pures et Appliquées, 2009, 91 (3), pp.296-338. ⟨10.1016/j.matpur.2009.01.001⟩, Journal de Mathématiques Pures et Appliquées, Elsevier, 2009, 91 (3), pp.296-338. ⟨10.1016/j.matpur.2009.01.001⟩
Publication Year :
2008
Publisher :
arXiv, 2008.

Abstract

Smoothed Wigner transforms have been used in signal processing, as a regularized version of the Wigner transform, and have been proposed as an alternative to it in the homogenization and / or semiclassical limits of wave equations. We derive explicit, closed formulations for the coarse-scale representation of the action of pseudodifferential operators. The resulting ``smoothed operators'' are in general of infinite order. The formulation of an appropriate framework, resembling the Gelfand-Shilov spaces, is necessary. Similarly we treat the ``smoothed Wigner calculus''. In particular this allows us to reformulate any linear equation, as well as certain nonlinear ones (e.g. Hartree and cubic non-linear Schr\"odinger), as coarse-scale phase-space equations (e.g. smoothed Vlasov), with spatial and spectral resolutions controlled by two free parameters. Finally, it is seen that the smoothed Wigner calculus can be approximated, uniformly on phase-space, by differential operators in the semiclassical regime. This improves the respective weak-topology approximation result for the Wigner calculus.<br />Comment: 58 pages, plain Tex

Details

ISSN :
00217824
Database :
OpenAIRE
Journal :
Journal de Mathématiques Pures et Appliquées, Journal de Mathématiques Pures et Appliquées, 2009, 91 (3), pp.296-338. ⟨10.1016/j.matpur.2009.01.001⟩, Journal de Mathématiques Pures et Appliquées, Elsevier, 2009, 91 (3), pp.296-338. ⟨10.1016/j.matpur.2009.01.001⟩
Accession number :
edsair.doi.dedup.....f50bb7e4d9cf6bc92c8eba811bc687c0
Full Text :
https://doi.org/10.48550/arxiv.0804.0259