Back to Search Start Over

Poly(fluoroacrylate)s with tunable surface hydrophobicity via radical copolymerization of 2,2,2-trifluoroethyl α-fluoroacrylate and 2-(trifluoromethyl)acrylic acid

Authors :
Lionel X. Dupuy
Vincent Ladmiral
Bhausaheb V. Tawade
Bruno Ameduri
Michael P. MacDonald
Sanjib Banerjee
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC)
The James Hutton Institute
Electronic Engineering and Physics Division, University of Dundee, Dundee, DD1 4HN, United Kingdom
affiliation inconnue
Consolated Grant EU (projet SENSOILS)
European Project: ERC SENSOILS-647857,SENSOILS
Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM)
Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Institut de Chimie du CNRS (INC)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Source :
Polymer Chemistry, Polymer Chemistry, Royal Society of Chemistry-RSC, 2017, 8, pp.1978-1988. ⟨10.1039/c7py00209b⟩, Polymer Chemistry, 2017, 8, pp.1978-1988. ⟨10.1039/c7py00209b⟩, Polym. Chem.
Publication Year :
2017
Publisher :
Royal Society of Chemistry (RSC), 2017.

Abstract

International audience; The synthesis of poly(fluoroacrylate)s with tunable wettability and improved adhesion for potential applicationas functional coatings was achieved via radical copolymerization of 2,2,2-trifluoroethylα-fluoroacrylate (FATRIFE) with 2-(trifluoromethyl)acrylic acid (MAF), an adhesion-promoting monomer.These copolymerizations, initiated by tert-butyl peroxypivalate at varying comonomer feed ([FATRIFE]0/[MAF]0) ratios led to a series of poly(FATRIFE-co-MAF) copolymers with different molar compositions infair to good conversions (32–87%) depending on the MAF feed content. The microstructures of the synthesizedpoly(FATRIFE-co-MAF) copolymers were determined by 19F NMR spectroscopy. Even at MAFfeed contents higher than 50%, MAF incorporation into the copolymers was lower than 50%, since MAFdoes not undergo any homopolymerization under radical polymerization conditions. The reactivity ratiosof the (FATRIFE; MAF) monomer pair were also determined (rFATRIFE = 1.65 ± 0.07 and rMAF = 0 at 56 °C)evidencing the formation of statistical copolymers. Initiation involving a highly branched perfluorinatedradical that released a •CF3 radical enabled the demonstration of the regioselective attack of the latterradical onto the CH2 of FATRIFE. The resulting poly(FATRIFE-co-MAF) copolymers exhibited various glasstransition temperatures (Tgs) depending on their compositions. Tg values increased with increasing MAFcontents in the copolymer. In addition, their thermal stability (the temperature for 10% weight loss in air,Td10%) increased with increasing FATRIFE content in the copolymer and reached 348 °C (for that containing93 mol% FATRIFE). Finally, a high copolymer MAF content led to both a good adhesion onto metalsubstrates and to improved hydrophilicity, as revealed by the decrease of the water contact angle from107° (for a reference PFATRIFE homopolymer) to 81° (for a copolymer containing 42 mol% MAF).

Details

ISSN :
17599962 and 17599954
Volume :
8
Database :
OpenAIRE
Journal :
Polymer Chemistry
Accession number :
edsair.doi.dedup.....f502a7f1a0ae3f2a2d98cbe61c49515a