Back to Search Start Over

Supervised Fractional-Order Embedding Geometrical Multi-View CCA (SFGMCCA) for Multiple Feature Integration

Authors :
Miki Haseyama
Takahiro Ogawa
Keisuke Maeda
Yoshiki Ito
Source :
IEEE Access, Vol 8, Pp 114340-114353 (2020)
Publication Year :
2020
Publisher :
IEEE (Institute of Electrical and Electronics Engineers), 2020.

Abstract

Techniques for integrating different types of multiple features effectively have been actively studied in recent years. Multiset canonical correlation analysis (MCCA), which maximizes the sum of pairwise correlations of inter-view (i.e., between different features), is one of the powerful methods for integrating different types of multiple features, and various MCCA-based methods have been proposed. This work focuses on a supervised MCCA variant in order to construct a novel effective feature integration framework. In this paper, we newly propose supervised fractional-order embedding geometrical multi-view CCA (SFGMCCA). This method constructs not only the correlation structure but also two types of geometrical structures of intra-view (i.e., within each feature) and inter-view simultaneously, thereby realizing more precise feature integration. This method also supports the integration of small sample and high-dimensional data by using the fractional-order technique. We conducted experiments using four types of image datasets, i.e., MNIST, COIL-20, ETH-80 and CIFAR-10. Furthermore, we also performed an fMRI dataset containing brain signals to verify the robustness. As a result, it was confirmed that accuracy improvements using SFGMCCA were statistically significant at the significance level of 0.05 compared to those using conventional representative MCCA-based methods.

Details

Language :
English
ISSN :
21693536
Volume :
8
Database :
OpenAIRE
Journal :
IEEE Access
Accession number :
edsair.doi.dedup.....f4a97c5f74dd285897111095202804df