Back to Search Start Over

Dirichlet series associated to cubic fields with given quadratic resolvent

Authors :
Frank Thorne
Henri Cohen
Lithe and fast algorithmic number theory (LFANT)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics [Columbia]
University of South Carolina [Columbia]
European Project: 278537,EC:FP7:ERC,ERC-2011-StG_20101014,ANTICS(2012)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Source :
Michigan Mathematical Journal, Michigan Mathematical Journal, 2014, 63, pp.253-273. ⟨10.1307/mmj/1401973050⟩, Michigan Mathematical Journal, University of Michigan, 2014, 63, pp.253-273, The Michigan Mathematical Journal, Michigan Math. J. 63, iss. 2 (2014), 253-273
Publication Year :
2014
Publisher :
Michigan Mathematical Journal, 2014.

Abstract

Let k be a quadratic field. We give an explicit formula for the Dirichlet series enumerating cubic fields whose quadratic resolvent field is isomorphic to k. Our work is a sequel to previous work of Cohen and Morra, where such formulas are proved in a more general setting, in terms of sums over characters of certain groups related to ray class groups. In the present paper we carry the analysis further and prove explicit formulas for these Dirichlet series over Q. In a companion paper we do the same for quartic fields having a given cubic resolvent. As an application (not present in the initial version), we compute tables of the number of S_3-sextic fields E with |Disc(E)| < X, for X ranging up to 10^23. An accompanying PARI/GP implementation is available from the second author's website.<br />16 pages, submitted. Revised version: includes counts of S_3-sextic fields

Details

ISSN :
00262285
Volume :
63
Database :
OpenAIRE
Journal :
Michigan Mathematical Journal
Accession number :
edsair.doi.dedup.....f46e783ae5cddb357141d8ad1784ecb7