Back to Search Start Over

Lozenge tiling dynamics and convergence to the hydrodynamic equation

Authors :
Benoit Laslier
Fabio Lucio Toninelli
University of Cambridge [UK] (CAM)
Statistical Laboratory [Cambridge]
Department of Pure Mathematics and Mathematical Statistics (DPMMS)
Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS)
University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)-Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS)
University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
Probabilités, statistique, physique mathématique (PSPM)
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
CNRS PICS grant 'Interfaces al ́eatoires discr`etes et dy-namiques de Glauber
ANR-15-CE40-0020,LSD,Modèles stochastiques en grande dimension pour la physique statistique hors équilibre(2015)
Source :
Communications in Mathematical Physics, Communications in Mathematical Physics, Springer Verlag, 2018, 358 (3), pp.1117-1149. ⟨10.1007/s00220-018-3095-y⟩
Publication Year :
2017
Publisher :
arXiv, 2017.

Abstract

We study a reversible continuous-time Markov dynamics of a discrete $(2+1)$-dimensional interface. This can be alternatively viewed as a dynamics of lozenge tilings of the $L\times L$ torus, or as a conservative dynamics for a two-dimensional system of interlaced particles. The particle interlacement constraints imply that the equilibrium measures are far from being product Bernoulli: particle correlations decay like the inverse distance squared and interface height fluctuations behave on large scales like a massless Gaussian field. We consider a particular choice of the transition rates, originally proposed in [Luby-Randall-Sinclair]: in terms of interlaced particles, a particle jump of length $n$ that preserves the interlacement constraints has rate $1/(2n)$. This dynamics presents special features: the average mutual volume between two interface configurations decreases with time and a certain one-dimensional projection of the dynamics is described by the heat equation. In this work we prove a hydrodynamic limit: after a diffusive rescaling of time and space, the height function evolution tends as $L\to\infty$ to the solution of a non-linear parabolic PDE. The initial profile is assumed to be $C^2$ differentiable and to contain no "frozen region". The explicit form of the PDE was recently conjectured on the basis of local equilibrium considerations. In contrast with the hydrodynamic equation for the Langevin dynamics of the Ginzburg-Landau model [Funaki-Spohn,Nishikawa], here the mobility coefficient turns out to be a non-trivial function of the interface slope.<br />Comment: 35 pages, 7 figures. v3: a few more typos corrected, remark 2.8 added. To appear on Comm. Math. Phys

Details

ISSN :
00103616 and 14320916
Database :
OpenAIRE
Journal :
Communications in Mathematical Physics, Communications in Mathematical Physics, Springer Verlag, 2018, 358 (3), pp.1117-1149. ⟨10.1007/s00220-018-3095-y⟩
Accession number :
edsair.doi.dedup.....f46e43d7029ef00f2acc0ffea5b12bad
Full Text :
https://doi.org/10.48550/arxiv.1701.05100