Back to Search Start Over

DNA damage repair is suppressed in porcine aged oocytes

Authors :
Tao Lin
So Yeon Kim
Dong Il Jin
Ling Sun
Jae Eun Lee
Source :
Journal of Animal Science and Technology, Journal of Animal Science and Technology, Vol 63, Iss 5, Pp 984-997 (2021)
Publication Year :
2021
Publisher :
Korean Society of Animal Science and Technology, 2021.

Abstract

This study sought to evaluate DNA damage and repair in porcine postovulatory aged oocytes. The DNA damage response, which was assessed by H2A.X expression, increased in porcine aged oocytes over time. However, the aged oocytes exhibited a significant decrease in the expression of RAD51, which reflects the DNA damage repair capacity. Further experiments suggested that the DNA repair ability was suppressed by the downregulation of genes involved in the homologous recombination (HR) and nonhomologous end-joining (NHEJ) pathways. The expression levels of the cell cycle checkpoint genes, CHEK1 and CHEK2, were upregulated in porcine aged oocytes in response to induced DNA damage. Immunofluorescence results revealed that the expression level of H3K79me2 was significantly lower in porcine aged oocytes than in control oocytes. In addition, embryo quality was significantly reduced in aged oocytes, as assessed by measuring the cell proliferation capacity. Our results provide evidence that DNA damage is increased and the DNA repair ability is suppressed in porcine aged oocytes. These findings increase our understanding of the events that occur during postovulatory oocyte aging.

Details

ISSN :
20550391 and 26720191
Volume :
63
Database :
OpenAIRE
Journal :
Journal of Animal Science and Technology
Accession number :
edsair.doi.dedup.....f413cb3621eb601c32292b0e0d2aad99