Back to Search
Start Over
Soluble Semiconductors AAsSe2 (A = Li, Na) with a Direct-Band-Gap and Strong Second Harmonic Generation: A Combined Experimental and Theoretical Study
- Source :
- Journal of the American Chemical Society. 132:3484-3495
- Publication Year :
- 2010
- Publisher :
- American Chemical Society (ACS), 2010.
-
Abstract
- AAsSe(2) (A = Li, Na) have been identified as a new class of polar direct-band gap semiconductors. These I-V-VI(2) ternary alkali-metal chalcoarsenates have infinite single chains of (1/infinity)[AsQ(2)(-)] derived from corner-sharing pyramidal AsQ(3) units with stereochemically active lone pairs of electrons on arsenic. The conformations and packing of the chains depend on the structure-directing alkali metals. This results in at least four different structural types for the Li(1-x)Na(x)AsSe(2) stoichiometry (alpha-LiAsSe(2), beta-LiAsSe(2), gamma-NaAsSe(2), and delta-NaAsSe(2)). Single-crystal X-ray diffraction studies showed an average cubic NaCl-type structure for alpha-LiAsSe(2), which was further demonstrated to be locally distorted by pair distribution function (PDF) analysis. The beta and gamma forms have polar structures built of different (1/infinity)[AsSe(2)(-)] chain conformations, whereas the delta form has nonpolar packing. A wide range of direct band gaps are observed, depending on composition: namely, 1.11 eV for alpha-LiAsSe(2), 1.60 eV for LiAsS(2), 1.75 eV for gamma-NaAsSe(2), 2.23 eV for NaAsS(2). The AAsQ(2) materials are soluble in common solvents such as methanol, which makes them promising candidates for solution processing. Band structure calculations performed with the highly precise screened-exchange sX-LDA FLAPW method confirm the direct-gap nature and agree well with experiment. The polar gamma-NaAsSe(2) shows very large nonlinear optical (NLO) second harmonic generation (SHG) response in the wavelength range of 600-950 nm. The theoretical studies confirm the experimental results and show that gamma-NaAsSe(2) has the highest static SHG coefficient known to date, 337.9 pm/V, among materials with band gaps larger than 1.0 eV.
- Subjects :
- Band gap
Chemistry
Pair distribution function
Second-harmonic generation
General Chemistry
Crystallography, X-Ray
Spectrum Analysis, Raman
Sodium Compounds
Biochemistry
Catalysis
Crystallography
Colloid and Surface Chemistry
Semiconductors
Solubility
Spectrophotometry
X-ray crystallography
Lithium Compounds
Arsenates
Thermodynamics
Direct and indirect band gaps
Selenium Compounds
Electronic band structure
Ternary operation
Lone pair
Subjects
Details
- ISSN :
- 15205126 and 00027863
- Volume :
- 132
- Database :
- OpenAIRE
- Journal :
- Journal of the American Chemical Society
- Accession number :
- edsair.doi.dedup.....f3abaf2668e5ad9845c7dfbf4e00726a