Back to Search Start Over

Computing the equisingularity type of a pseudo-irreducible polynomial

Authors :
Adrien Poteaux
Martin Weimann
Calcul Formel (CALFOR)
Laboratoire d'Informatique Fondamentale de Lille (LIFL)
Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)
Laboratoire de Géométrie Algébrique et Applications à la Théorie de l'Information (GAATI)
Université de la Polynésie Française (UPF)
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Applicable Algebra in Engineering, Communication and Computing, Applicable Algebra in Engineering, Communication and Computing, Springer Verlag, 2020, 31, pp.435-460. ⟨10.1007/s00200-020-00451-x⟩, Applicable Algebra in Engineering, Communication and Computing, 2020, 31, pp.435-460. ⟨10.1007/s00200-020-00451-x⟩
Publication Year :
2019

Abstract

Germs of plane curve singularities can be classified accordingly to their equisingularity type. For singularities over C, this important data coincides with the topological class. In this paper, we characterise a family of singularities, containing irreducible ones, whose equisingularity type can be computed in quasi-linear time with respect to the discriminant valuation of a Weierstrass equation.<br />26 pages. arXiv admin note: substantial text overlap with arXiv:1904.00286

Details

Language :
English
ISSN :
09381279 and 14320622
Database :
OpenAIRE
Journal :
Applicable Algebra in Engineering, Communication and Computing, Applicable Algebra in Engineering, Communication and Computing, Springer Verlag, 2020, 31, pp.435-460. ⟨10.1007/s00200-020-00451-x⟩, Applicable Algebra in Engineering, Communication and Computing, 2020, 31, pp.435-460. ⟨10.1007/s00200-020-00451-x⟩
Accession number :
edsair.doi.dedup.....f39689224ee43d5c8793222aaceb61c9