Back to Search
Start Over
Revealing the Aggregation Mechanism, Structure, and Internal Dynamics of Poly(vinyl alcohol) Microgel Prepared through Liquid–Liquid Phase Separation
- Source :
- Macromolecules 53(3), 852-861 (2020). doi:10.1021/acs.macromol.9b02203
- Publication Year :
- 2020
- Publisher :
- American Chemical Society (ACS), 2020.
-
Abstract
- The use of technologies based on soft polymer particles represents an effective way to deliver target molecules with a specific function. To design a well-performing delivery system, it is fundamental to rationalize both the aggregation and the structural properties of such particles. In this study, we present the kinetic and structural characterization over time of poly(vinyl alcohol) (PVA) microgels obtained through a salting-out process in the presence of NaCl. We have analyzed how both the polymer and salt concentrations affect the aggregation process. The aggregation rate as well as the morphology and physico-chemical parameters, such as mass and chain density of the microgels, have been determined through static and dynamic light scattering and discussed in the framework of the diffusion-limited and reaction-limited colloid aggregation. Insights into the polymer chain arrangements and their dynamics have been gained by means of small-angle neutron scattering and neutron spin-echo measurements. As a result, it was found that NaCl induces a liquid phase separation in solution with the formation of spherical PVA microaggregates, which grow under a reaction-limited aggregation mechanism. The particles increase their size and compactness over time. Within the aggregate, the polymer chains are locally organized to form randomly oriented lamellae with a thickness of about 60 Å. The internal dynamics is a complex mixture of diffusion, Zimm dynamics, and possibly effects from crowding with the transition to a Rouse-like behavior. The microparticle preparation based on the salting-out process constitutes a novelty, if compared to the methods already existing and based on the use of chemical cross-linkers, and is a cheap and easy protocol that allows tuning both particle size and density by varying the salt concentration.
- Subjects :
- chemistry.chemical_classification
Vinyl alcohol
Materials science
Polymers and Plastics
Organic Chemistry
02 engineering and technology
Polymer
Neutron scattering
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Characterization (materials science)
Condensed Matter::Soft Condensed Matter
Inorganic Chemistry
chemistry.chemical_compound
Colloid
Dynamic light scattering
chemistry
Chemical engineering
ddc:540
Materials Chemistry
Molecule
Neutron
0210 nano-technology
Subjects
Details
- ISSN :
- 15205835 and 00249297
- Volume :
- 53
- Database :
- OpenAIRE
- Journal :
- Macromolecules
- Accession number :
- edsair.doi.dedup.....f3511bb1d0a08d31f2b80a98757f521c
- Full Text :
- https://doi.org/10.1021/acs.macromol.9b02203