Back to Search Start Over

Relative Hom-Hopf modules and total integrals

Authors :
Shuangjian Guo
Xiaohui Zhang
Shengxiang Wang
Source :
Journal of Mathematical Physics. 56:021701
Publication Year :
2015
Publisher :
AIP Publishing, 2015.

Abstract

Let $(H, \a)$ be a monoidal Hom-Hopf algebra and $(A, \b)$ a right $(H, \a)$-Hom-comodule algebra. We first investigate the criterion for the existence of a total integral of $(A, \b)$ in the setting of monoidal Hom-Hopf algebras. Also we prove that there exists a total integral $\phi: (H, \a)\rightarrow (A, \b)$ if and only if any representation of the pair $(H,A)$ is injective in a functorial way, as a corepresentation of $(H, \a)$, which generalizes Doi's result. Finally, we define a total quantum integral $\g: H\rightarrow Hom(H, A)$ and prove the following affineness criterion: if there exists a total quantum integral $\g$ and the canonical map $\psi: A\o_{B}A\rightarrow A\o H,\ \ a\o_{B}b\mapsto \b^{-1}(a)b_{[0]}\o \a(b_{[1]}) $is surjective, then the induction functor $A\o_B-: \widetilde{\mathscr{H}}(\mathscr{M}_k)_{B}\rightarrow \widetilde{\mathscr{H}}(\mathscr{M}_k)^{H}_{A}$ is an equivalence of categories.<br />Comment: 20 pages. arXiv admin note: text overlap with arXiv:math/0106067 by other authors

Details

ISSN :
10897658 and 00222488
Volume :
56
Database :
OpenAIRE
Journal :
Journal of Mathematical Physics
Accession number :
edsair.doi.dedup.....f341e236a4f7d68ec845536bcb8235ce
Full Text :
https://doi.org/10.1063/1.4906938