Back to Search
Start Over
Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy
- Source :
- Epilepsy research. 136
- Publication Year :
- 2017
-
Abstract
- Treatment of TBI remains a major unmet medical need, with 2.5 million new cases of traumatic brain injury (TBI) each year in Europe and 1.5 million in the USA. This single-center proof-of-concept preclinical study tested the hypothesis that pharmacologic neurostimulation with proconvulsants, either atipamezole, a selective α2-adrenoceptor antagonist, or the cannabinoid receptor 1 antagonist SR141716A, as monotherapy would improve functional recovery after TBI. A total of 404 adult Sprague-Dawley male rats were randomized into two groups: sham-injured or lateral fluid-percussion–induced TBI. The rats were treated with atipamezole (started at 30 min or 7 d after TBI) or SR141716A (2 min or 30 min post-TBI) for up to 9 wk. Total follow-up time was 14 wk after treatment initiation. Outcome measures included motor (composite neuroscore, beam-walking) and cognitive performance (Morris water-maze), seizure susceptibility, spontaneous seizures, and cortical and hippocampal pathology. All injured rats exhibited similar impairment in the neuroscore and beam-walking tests at 2 d post-TBI. Atipamezole treatment initiated at either 30 min or 7 d post-TBI and continued for 9 wk via subcutaneous osmotic minipumps improved performance in both the neuroscore and beam-walking tests, but not in the Morris water-maze spatial learning and memory test. Atipamezole treatment initiated at 7 d post-TBI also reduced seizure susceptibility in the pentylenetetrazol test 14 wk after treatment initiation, although it did not prevent the development of epilepsy. SR141716A administered as a single dose at 2 min post-TBI or initiated at 30 min post-TBI and continued for 9 wk had no recovery-enhancing or antiepileptogenic effects. Mechanistic studies to assess the α2-adrenoceptor subtype specificity of the disease-modifying effects of atipametzole revealed that genetic ablation of α2A-noradrenergic receptor function in Adra2A mice carrying an N79P point mutation had antiepileptogenic effects after TBI. On the other hand, blockade of α2C-adrenoceptors using the receptor subtype-specific antagonist ORM-12741 had no favorable effects on the post-TBI outcome. Finally, to assess whether regulation of the post-injury inflammatory response by atipametzole in glial cells contributed to a favorable outcome, we investigated the effect of atipamezole on spontaneous and/or lipopolysaccharide-stimulated astroglial or microglial cytokine release in vitro. We observed no effect. Our data demonstrate that a 9-wk administration of α2A-noradrenergic antagonist, atipamezole, is recovery-enhancing after TBI.<br />final draft<br />peerReviewed
- Subjects :
- 0301 basic medicine
Male
Drug Evaluation, Preclinical
Epileptogenesis
Body Temperature
Rats, Sprague-Dawley
Epilepsy
Random Allocation
0302 clinical medicine
Piperidines
Post-traumatic epilepsy
Spatial Memory
Neuronal Plasticity
Imidazoles
Atipamezole
Brain
α2-Adrenoceptor
Cannabinoid 1 receptor antagonist
Adrenergic alpha-2 Receptor Antagonists
Lateral fluid-percussion
Neuroprotective Agents
Neurology
Anesthesia
SR141716A
Anticonvulsants
Rimonabant
Psychology
Composite neuroscore
medicine.drug
Traumatic brain injury
Motor Activity
Somato-motor performance
Proof of Concept Study
03 medical and health sciences
Memory
Seizures
Beam walking
medicine
Animals
Pentylenetetrazol
Antagonist
Recovery of Function
medicine.disease
Epilepsy, Post-Traumatic
Axons
Blockade
030104 developmental biology
Pyrazoles
Neurology (clinical)
030217 neurology & neurosurgery
Seizure susceptibility
Subjects
Details
- ISSN :
- 18726844
- Volume :
- 136
- Database :
- OpenAIRE
- Journal :
- Epilepsy research
- Accession number :
- edsair.doi.dedup.....f31254eaee98da7c90e42a730f5ab7ad