Back to Search Start Over

Coordinate regulation of glucose transporter function, number, and gene expression by insulin and sulfonylureas in L6 rat skeletal muscle cells

Authors :
Jeffrey S. Flier
Ramesh C. Nayak
R J Smith
P H Wang
David E. Moller
Source :
Journal of Clinical Investigation. 84:62-67
Publication Year :
1989
Publisher :
American Society for Clinical Investigation, 1989.

Abstract

The extrapancreatic actions of sulfonylureas on the glucose transport system were studied in the L6 line of cultured rat skeletal muscle cells. Insulin (10(-7) M) increased 2-deoxyglucose uptake in differentiated L6 myotubes by 30-40% after 8 h of incubation. The sulfonylurea tolazamide (0.6 mg/ml, 22 h) had no effect on glucose uptake in the absence of insulin, but increased insulin-stimulated 2-deoxyglucose uptake twofold. The total cellular content of glucose transporters was assessed with a monoclonal anti-transporter antibody by a solid-phase ELISA method. Insulin (8 h) increased the quantity of glucose transporters, with a maximal twofold increase at 10(-7) M and a dose-response curve similar to that for insulin stimulation of glucose uptake. In spite of its lack of effect on glucose uptake, tolazamide alone (0.6 mg/ml) increased the cellular content of transporters by 70%. The effects of insulin and tolazamide on transporter gene expression were studied with probes derived from Hep G2 glucose transporter cDNA. Insulin increased the transporter mRNA level 1.7-fold, tolazamide increased it 1.5-fold, and the combination of insulin and tolazamide increased transporter mRNA 3-fold. It is concluded that sulfonylureas, together with insulin, enhance glucose uptake in L6 skeletal muscle cells by increasing the number of functioning glucose transport molecules. The long-term regulation of the glucose transport system in skeletal muscle by insulin and sulfonylureas in vivo may involve similar changes in transporter function, number, and gene expression.

Details

ISSN :
00219738
Volume :
84
Database :
OpenAIRE
Journal :
Journal of Clinical Investigation
Accession number :
edsair.doi.dedup.....f2f385cc99b5427a6c1ab6aec283f927
Full Text :
https://doi.org/10.1172/jci114170