Back to Search
Start Over
A Value-Oriented Price Forecasting Approach to Optimize Trading of Renewable Generation
- Source :
- HAL, 2021 IEEE Madrid PowerTech, 2021 IEEE Madrid PowerTech, IEEE, Jun 2021, Madrid, Spain
- Publication Year :
- 2021
- Publisher :
- IEEE, 2021.
-
Abstract
- International audience; The participation of renewable generators in electricity markets involves employing a number of forecasting and decision-making tools. The standard approach consists in forecasting power output and market quantities, and then inputting the results into an optimization problem to derive optimal decisions. Typically, forecasting models are trained to optimize accuracy without considering the subsequent decision-making process. In this paper, we consider training forecasting models with a value-oriented approach that aims to minimize the suboptimality of decisions induced by a set of predicted inputs. We consider a risk-aware renewable generator participating in a day-ahead market subject to imbalance costs, and train ensembles of decision trees to forecast the imbalance penalty by directly minimizing trading costs for the provided strategy. The results indicate that our innovative approach leads to improved trading performance, compared to the standard method in which forecasting models are trained to minimize prediction errors.
- Subjects :
- Optimization problem
decision trees
renewable energies
Operations research
Process (engineering)
business.industry
Computer science
Decision tree
value-oriented forecasting
energy trading
16. Peace & justice
7. Clean energy
Renewable energy
Set (abstract data type)
[SPI]Engineering Sciences [physics]
Smart grid
[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]
electricity markets
alternative loss functions
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Electricity
smart grid
business
Generator (mathematics)
Subjects
Details
- ISBN :
- 978-1-66543-597-0
- ISBNs :
- 9781665435970
- Database :
- OpenAIRE
- Journal :
- 2021 IEEE Madrid PowerTech
- Accession number :
- edsair.doi.dedup.....f2ce89ece7c77af238ab5ad6672aa75d