Back to Search Start Over

Increasing Peak Capacity in Nontargeted Omics Applications by Combining Full Scan Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography–Mass Spectrometry

Authors :
Matthew A. Turner
Kayleigh L. Arthur
Colin S. Creaser
James C. Reynolds
Source :
Analytical Chemistry. 89:3452-3459
Publication Year :
2017
Publisher :
American Chemical Society (ACS), 2017.

Abstract

Full scan field asymmetric waveform ion mobility spectrometry (FAIMS) combined with liquid chromatography and mass spectrometry (LC-FAIMS-MS) is shown to enhance peak capacity for omics applications. A miniaturized FAIMS device capable of rapid compensation field scanning has been incorporated into an ultrahigh performance liquid chromatography (UHPLC) and time-of-flight mass spectrometry analysis, allowing the acquisition of full scan FAIMS and MS nested data sets within the time scale of a UHPLC peak. Proof of principle for the potential of scanning LC-FAIMS-MS in omics applications is demonstrated for the nontargeted profiling of human urine using a HILIC column. The high level of orthogonality between FAIMS and MS provides additional unique compound identifiers with detection of features based on retention time, FAIMS dispersion field and compensation field (DF and CF), and mass-to-charge (m/z). Extracted FAIMS full scan data can be matched to standards to aid the identification of unknown analytes. The peak capacity for features detected in human urine using LC-FAIMS-MS was increased approximately threefold compared to LC-MS alone due to a combination of the reduction of chemical noise and separation of coeluting isobaric species across the entire analytical space. The use of FAIMS-selected in source collision induced dissociation (FISCID) yields fragmentation of ions, which reduces sample complexity associated with overlapping fragmentation patterns and provides structural information on the selected precursor ions.

Details

ISSN :
15206882 and 00032700
Volume :
89
Database :
OpenAIRE
Journal :
Analytical Chemistry
Accession number :
edsair.doi.dedup.....f2a5fbe160b981702959271bb261daab
Full Text :
https://doi.org/10.1021/acs.analchem.6b04315