Back to Search Start Over

Schrödinger operators with Leray-Hardy potential singular on the boundary

Authors :
Laurent Veron
Huyuan Chen
Jiangxi Normal University
Laboratoire de Mathématiques et Physique Théorique (LMPT)
Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
H. Chen is supported by NSF of China, No: 11726614, 11661045, by the Jiangxi Provincial Natural Science Foundation, No: 20161ACB20007, and by the Alexander von Humboldt Foundation.
Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Differential Equations, Journal of Differential Equations, Elsevier, In press
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

We study the kernel function of the operator u $\rightarrow$ L $\mu$ u = --$\Delta$u + $\mu$ |x| 2 u in a bounded smooth domain $\Omega$ $\subset$ R N + such that 0 $\in$ $\partial$$\Omega$, where $\mu$ $\ge$ -- N 2 4 is a constant. We show the existence of a Poisson kernel vanishing at 0 and a singular kernel with a singularity at 0. We prove the existence and uniqueness of weak solutions of L $\mu$ u = 0 in $\Omega$ with boundary data $\nu$ + k$\delta$ 0 , where $\nu$ is a Radon measure on $\partial$$\Omega$ \ {0}, k $\in$ R and show that this boundary data corresponds in a unique way to the boundary trace of positive solution of L $\mu$ u = 0 in $\Omega$.

Details

ISSN :
00220396 and 10902732
Volume :
269
Database :
OpenAIRE
Journal :
Journal of Differential Equations
Accession number :
edsair.doi.dedup.....f222e28940f5ad34e7c59eab9fdd7299
Full Text :
https://doi.org/10.1016/j.jde.2020.01.029