Back to Search
Start Over
Schrödinger operators with Leray-Hardy potential singular on the boundary
- Source :
- Journal of Differential Equations, Journal of Differential Equations, Elsevier, In press
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- We study the kernel function of the operator u $\rightarrow$ L $\mu$ u = --$\Delta$u + $\mu$ |x| 2 u in a bounded smooth domain $\Omega$ $\subset$ R N + such that 0 $\in$ $\partial$$\Omega$, where $\mu$ $\ge$ -- N 2 4 is a constant. We show the existence of a Poisson kernel vanishing at 0 and a singular kernel with a singularity at 0. We prove the existence and uniqueness of weak solutions of L $\mu$ u = 0 in $\Omega$ with boundary data $\nu$ + k$\delta$ 0 , where $\nu$ is a Radon measure on $\partial$$\Omega$ \ {0}, k $\in$ R and show that this boundary data corresponds in a unique way to the boundary trace of positive solution of L $\mu$ u = 0 in $\Omega$.
- Subjects :
- Harnack inequality
Pure mathematics
Trace (linear algebra)
Applied Mathematics
010102 general mathematics
Poisson kernel
Boundary (topology)
Hardy Potential
01 natural sciences
Radon Measure
Domain (mathematical analysis)
010101 applied mathematics
symbols.namesake
Mathematics - Analysis of PDEs
Limit set
Singularity
Bounded function
symbols
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Uniqueness
MSC2010: 35J75, 35B44
0101 mathematics
Analysis
Harnack's inequality
Mathematics
Subjects
Details
- ISSN :
- 00220396 and 10902732
- Volume :
- 269
- Database :
- OpenAIRE
- Journal :
- Journal of Differential Equations
- Accession number :
- edsair.doi.dedup.....f222e28940f5ad34e7c59eab9fdd7299
- Full Text :
- https://doi.org/10.1016/j.jde.2020.01.029