Back to Search Start Over

Intravoxel Incoherent Motion Imaging in Small Vessel Disease

Authors :
Jacobus F.A. Jansen
Erik I. Hoff
Sau May Wong
Renske Uiterwijk
C. Eleana Zhang
Cécile R. L. P. N. Jeukens
Walter H. Backes
Julie Staals
Tobien H.C.M.L. Schreuder
Robert J. van Oostenbrugge
Beeldvorming
RS: MHeNs - R1 - Cognitive Neuropsychiatry and Clinical Neuroscience
RS: MHeNs - R2 - Mental Health
Promovendi MHN
Klinische Neurowetenschappen
MUMC+: MA Med Staf Spec Neurologie (9)
RS: CARIM - R3.03 - Cerebral small vessel disease
MUMC+: DA BV Klinisch Fysicus (9)
Hersenen & Gedrag
MUMC+: MA Neurologie (3)
Source :
Stroke, 48(3), 658-663. LIPPINCOTT WILLIAMS & WILKINS
Publication Year :
2017
Publisher :
Ovid Technologies (Wolters Kluwer Health), 2017.

Abstract

Background and Purpose— Cerebral small vessel disease (SVD) is associated with cognitive impairment. This may be because of decreased microstructural integrity and microvascular perfusion, but data on these relationships are scarce. We determined the relationship between cognition and microvascular perfusion and microstructural integrity in SVD patients, using intravoxel incoherent motion imaging—a diffusion-weighted magnetic resonance imaging technique designed to determine microvascular perfusion and microstructural integrity simultaneously. Methods— Seventy-three patients with SVD and 39 controls underwent intravoxel incoherent motion imaging and neuropsychological assessment. Parenchymal diffusivity D (a surrogate measure of microstructural integrity) and perfusion-related measure fD* were calculated for the normal appearing white matter, white matter hyperintensities, and cortical gray matter. The associations between cognitive performance and D and fD* were determined. Results— In SVD patients, multivariable analysis showed that lower fD* in the normal appearing white matter and cortical gray matter was associated with lower overall cognition ( P =0.03 and P =0.002, respectively), lower executive function ( P =0.04 and P =0.01, respectively), and lower information-processing speed ( P =0.04 and P =0.01, respectively). D was not associated with cognitive function. In controls, no association was found between D , fD* , and cognition. Conclusions— In SVD patients, lower cognitive performance is associated with lower microvascular perfusion in the normal appearing white matter and cortical gray matter. Our results support recent findings that both cortical gray matter and normal appearing white matter perfusion may play a role in the pathophysiology of cognitive dysfunction in SVD. Clinical Trial Registration— URL: http://www.trialregister.nl . Unique identifier: NTR3786.

Details

ISSN :
15244628 and 00392499
Volume :
48
Database :
OpenAIRE
Journal :
Stroke
Accession number :
edsair.doi.dedup.....f1c034c9082bdc246dd92b7f6fe765b0