Back to Search Start Over

Pattern Separation in the Hippocampus: Distinct Circuits under Different Conditions

Authors :
Frédéric Alexandre
Randa Kassab
Mnemonic Synergy (Mnemosyne)
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut des Maladies Neurodégénératives [Bordeaux] (IMN)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Inria Bordeaux - Sud-Ouest
Source :
Brain Structure and Function, Brain Structure and Function, 2018, 223 (6), pp.2785-2808. ⟨10.1007/s00429-018-1659-4⟩, Brain Structure and Function, Springer Verlag, 2018, 223 (6), pp.2785-2808. ⟨10.1007/s00429-018-1659-4⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; Pattern separation is a fundamental hippocampal process thought to be critical for distinguishing similar episodic memories, and has long been recognized as a natural function of the dentate gyrus (DG) supporting autoassociative learning in CA3. Understanding how neural circuits within the DG-CA3 network mediate this process has received much interest, yet the exact mechanisms behind remain elusive. Here we argue for the case that sparse coding is necessary but not sufficient to ensure efficient separation and, alternatively, propose a possible interaction of distinct circuits which, nevertheless, act in synergy to produce a unitary function of pattern separation. The proposed circuits involve different functional granule-cell populations, a primary population mediates sparsification and provides recurrent excitation to the other populations which are related to additional pattern separation mechanisms with higher degrees of robustness against interference in CA3. A variety of top-down and bottom-up factors, such as motivation, emotion, and pattern similarity, controls the selection of circuitry depending on circumstances. According to this framework, a computational model is implemented and tested against model variants in a series of numerical simulations and biological experiments. The results demonstrate that the model combines fast learning, robust pattern separation and high storage capacity. It also accounts for the controversy around the involvement of the DG during memory recall, explains other puzzling findings, and makes predictions that can inform future investigations.

Details

Language :
English
ISSN :
18632653 and 18632661
Database :
OpenAIRE
Journal :
Brain Structure and Function, Brain Structure and Function, 2018, 223 (6), pp.2785-2808. ⟨10.1007/s00429-018-1659-4⟩, Brain Structure and Function, Springer Verlag, 2018, 223 (6), pp.2785-2808. ⟨10.1007/s00429-018-1659-4⟩
Accession number :
edsair.doi.dedup.....f1a6aad800fd2e0aeb1cea9480273a9a
Full Text :
https://doi.org/10.1007/s00429-018-1659-4⟩