Back to Search Start Over

Reliable and Practical Computational Prediction of Molecular Crystal Polymorphs

Authors :
Marcus A. Neumann
Johannes Hoja
Roberto Car
Alexandre Tkatchenko
Hsin-Yu Ko
Robert A. DiStasio
Source :
Science Advances
Publication Year :
2018
Publisher :
arXiv, 2018.

Abstract

Quantum-mechanical calculations enable reliable computation of structures and stabilities for molecular crystal polymorphs.<br />Reliable prediction of the polymorphic energy landscape of a molecular crystal would yield profound insight into drug development in terms of the existence and likelihood of late-appearing polymorphs. However, the computational prediction of molecular crystal polymorphs is highly challenging due to the high dimensionality of conformational and crystallographic space accompanied by the need for relative free energies to within 1 kJ/mol per molecule. In this study, we combine the most successful crystal structure sampling strategy with the most successful first-principles energy ranking strategy of the latest blind test of organic crystal structure prediction methods. Specifically, we present a hierarchical energy ranking approach intended for the refinement of relative stabilities in the final stage of a crystal structure prediction procedure. Such a combined approach provides excellent stability rankings for all studied systems and can be applied to molecular crystals of pharmaceutical importance.

Details

Database :
OpenAIRE
Journal :
Science Advances
Accession number :
edsair.doi.dedup.....f19c40df595f771190f11f6bb2ec4da6
Full Text :
https://doi.org/10.48550/arxiv.1803.07503