Back to Search
Start Over
A UAV Ice Tracking Framework for Autonomous Sea Ice Management
- Publication Year :
- 2017
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2017.
-
Abstract
- This paper describes an unmanned aerial vehicle (UAV) ice tracking framework for use in sea ice management applications. The framework is intended to be used in an ice management scenario where the UAV should detect and track the movement of icebergs and ice floes in an Arctic environment, and seeks to enable the UAV to do so autonomously. This is achieved by using an occupancy grid map algorithm and a locations of interest generator coupled with a Model Predictive Control (MPC) UAV path planner. The main contribution of this paper is interfacing the occupancy grid map algorithm with a machine vision object detection module in order to enable the UAV to generate an occupancy grid map of a pre-defined search area in real-time using on-board processing of UAV sensor data. Further, the paper presents a locations of interest generator module which generates locations that the UAV should investigate based on the generated occupancy grid map. These locations of interest are then used by an MPC path planner in order to make the UAV autonomously investigate and track ice features at said locations. Furthermore, the paper verifies the use of the developed ice tracking framework for autonomously detecting and tracking ice features based on thermal images captured with a UAV, as well as verifying the usefulness and role of UAVs in ice management scenarios by conducting two flight experiments. © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
- Subjects :
- 0209 industrial biotechnology
geography
geography.geographical_feature_category
Occupancy grid mapping
010504 meteorology & atmospheric sciences
Machine vision
Computer science
business.industry
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
ComputerApplications_COMPUTERSINOTHERSYSTEMS
02 engineering and technology
Tracking (particle physics)
01 natural sciences
Object detection
Iceberg
Model predictive control
020901 industrial engineering & automation
Interfacing
Sea ice
Computer vision
Artificial intelligence
business
0105 earth and related environmental sciences
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....f18e104d9fc808f738518c48dc6a9f0c