Back to Search Start Over

Intracerebroventricular application of S100B selectively impairs pial arteriolar dilating function in rats

Authors :
Benjarat Changyaleket
Dale A. Pelligrino
Francesco Vetri
Tibor Valyi-Nagy
Zhao Zhong Chong
Chanannait Paisansathan
Haoliang Xu
Fernando D. Testai
Source :
Brain research. 1634
Publication Year :
2015

Abstract

S100B is an astrocyte-derived protein that can act through the receptor for advanced glycation endproducts (RAGE) to mediate either "trophic" or "toxic" responses. Its levels increase in many neurological conditions with associated microvascular dysregulation, such as subarachnoid hemorrhage (SAH) and traumatic brain injury. The role of S100B in the pathogenesis of microvasculopathy has not been addressed. This study was designed to examine whether S100B alters pial arteriolar vasodilating function. Rats were randomized to receive (1) artificial cerebrospinal fluid (aCSF), (2) exogenous S100B, and (3) exogenous S100B+the decoy soluble RAGE (sRAGE). S100B was infused intracerebroventricularly (icv) using an osmotic pump and its levels in the CSF were adjusted to achieve a concentration similar to what we observed in SAH. After 48 h of continuous icv infusion, a cranial window/intravital microscopy was applied to animals for evaluation of pial arteriolar dilating responses to sciatic nerve stimulation (SNS), hypercapnia, and topical suffusion of vasodilators including acetylcholine (ACh), s-nitroso-N-acetyl penicillamine (SNAP), or adenosine (ADO). Pial arteriolar dilating responses were calculated as the percentage change of arteriolar diameter in relation to baseline. The continuous S100B infusion for 48 h was associated with reduced responses to the neuronal-dependent vasodilator SNS (p0.05) and the endothelial-dependent vasodilator ACh (p0.05), compared to controls. The inhibitory effects of S100B were prevented by sRAGE. On the other hand, S100B did not alter the responses elicited by vascular smooth muscle cell-dependent vasodilators, namely hypercapnia, SNAP, or ADO. These findings indicate that S100B regulates neuronal and endothelial dependent cerebral arteriolar dilation and suggest that this phenomenon is mediated through RAGE-associated pathways.

Details

ISSN :
18726240
Volume :
1634
Database :
OpenAIRE
Journal :
Brain research
Accession number :
edsair.doi.dedup.....f16994d87cfd7765e95c913efccece02