Back to Search Start Over

Autosomal dominant Glut-1 deficiency syndrome and familial epilepsy

Authors :
Folker Hanefeld
Yuan-Yuan Ho
Knut Brockmann
Arpad von Moers
Jorge Fischbarg
Pamela Kranz-Eble
Darryl C. De Vivo
Dong Wang
Kunyan Kuang
Christoph Korenke
Li Ma
Hong Yang
Juan M. Pascual
Source :
Annals of Neurology. 50:476-485
Publication Year :
2001
Publisher :
Wiley, 2001.

Abstract

Glut-1 deficiency syndrome was first described in 1991 as a sporadic clinical condition, later shown to be the result of haploinsufficiency. We now report a family with Glut-1 deficiency syndrome affecting 5 members over 3 generations. The syndrome behaves as an autosomal dominant condition. Affected family members manifested mild to severe seizures, developmental delay, ataxia, hypoglycorrhachia, and decreased erythrocyte 3-O-methyl-D-glucose uptake. Seizure frequency and severity were aggravated by fasting, and responded to a carbohydrate load. Glut-1 immunoreactivity in erythrocyte membranes was normal. A heterozygous R126H missense mutation was identified in the 3 patients available for testing, 2 brothers (Generation 3) and their mother (Generation 2). The sister and her father were clinically and genotypically normal. In vitro mutagenesis studies in Xenopus laevis oocytes demonstrated significant decreases in the transport of 3-O-methyl-D-glucose and dehydroascorbic acid. Xenopus oocyte membranes expressed high amounts of the R126H mutant Glut-1. Kinetic analysis indicated that replacement of arginine-126 by histidine in the mutant Glut-1 resulted in a lower Vmax. These studies demonstrate the pathogenicity of the R126H missense mutation and transmission of Glut-1 deficiency syndrome as an autosomal dominant trait.

Details

ISSN :
15318249 and 03645134
Volume :
50
Database :
OpenAIRE
Journal :
Annals of Neurology
Accession number :
edsair.doi.dedup.....f15488eddfae9f6369d96f24414430c8
Full Text :
https://doi.org/10.1002/ana.1222