Back to Search Start Over

Altered fibroblast proteoglycan production in COPD

Authors :
Jonas S. Erjefält
Leif Eriksson
Gunilla Westergren-Thorsson
Leif Bjermer
Magnus Dahlbäck
Oskar Hallgren
Kristian Nihlberg
Claes-Göran Löfdahl
Source :
Respiratory Research, Vol 11, Iss 1, p 55 (2010), Respiratory Research
Publisher :
Springer Nature

Abstract

Background Airway remodeling in COPD includes reorganization of the extracellular matrix. Proteoglycans play a crucial role in this process as regulators of the integrity of the extracellular matrix. Altered proteoglycan immunostaining has been demonstrated in COPD lungs and this has been suggested to contribute to the pathogenesis. The major cell type responsible for production and maintenance of ECM constituents, such as proteoglycans, are fibroblasts. Interestingly, it has been proposed that central airways and alveolar lung parenchyma contain distinct fibroblast populations. This study explores the hypothesis that altered depositions of proteoglycans in COPD lungs, and in particular versican and perlecan, is a result of dysregulated fibroblast proteoglycan production. Methods Proliferation, proteoglycan production and the response to TGF-β1 were examined in vitro in centrally and distally derived fibroblasts isolated from COPD patients (GOLD stage IV) and from control subjects. Results Phenotypically different fibroblast populations were identified in central airways and in the lung parenchyma. Versican production was higher in distal fibroblasts from COPD patients than from control subjects (p < 0.01). In addition, perlecan production was lower in centrally derived fibroblasts from COPD patients than from control subjects (p < 0.01). TGF-β1 triggered similar increases in proteoglycan production in distally derived fibroblasts from COPD patients and control subjects. In contrast, centrally derived fibroblasts from COPD patients were less responsive to TGF-β1 than those from control subjects. Conclusions The results show that fibroblasts from COPD patients have alterations in proteoglycan production that may contribute to disease development. Distally derived fibroblasts from COPD patients have enhanced production of versican that may have a negative influence on the elastic recoil. In addition, a lower perlecan production in centrally derived fibroblasts from COPD patients may indicate alterations in bronchial basement membrane integrity in severe COPD.

Details

Language :
English
ISSN :
1465993X
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Respiratory Research
Accession number :
edsair.doi.dedup.....f0ef65c373cbbfe3a7b312796f57af01
Full Text :
https://doi.org/10.1186/1465-9921-11-55