Back to Search Start Over

Inverse problem for the heat equation and the Schrodinger equation on a tree

Authors :
Liviu I. Ignat
Ademir F. Pazoto
Lionel Rosier
Rosier, Lionel
'Simion Stoilow' Institute of Mathematics (IMAR)
Romanian Academy of Sciences
Basque Center for Applied Mathematics (BCAM)
Basque Center for Applied Mathematics
Instituto de Matemática da Universidade Federal do Rio de Janeiro (IM / UFRJ)
Universidade Federal do Rio de Janeiro (UFRJ)
Institut Élie Cartan de Nancy (IECN)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
Inverse Problems, Inverse Problems, 2012, 28, pp.015011, Inverse Problems, IOP Publishing, 2012, 28, pp.015011, BIRD: BCAM's Institutional Repository Data, instname
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; In this paper we establish global Carleman estimates for the heat and Schrodinger equations on a network. The heat equation is considered on a general tree and the Schrodinger equation on a star-shaped tree. The Carleman inequalities are used to prove the Lipschitz stability for an inverse problem consisting in retrieving a stationary potential in the heat (resp. the Schrodinger) equation from boundary measurements.

Details

Language :
English
ISSN :
02665611 and 13616420
Database :
OpenAIRE
Journal :
Inverse Problems, Inverse Problems, 2012, 28, pp.015011, Inverse Problems, IOP Publishing, 2012, 28, pp.015011, BIRD: BCAM's Institutional Repository Data, instname
Accession number :
edsair.doi.dedup.....f0e43d3617887f06759b1a2827cc0b40