Back to Search
Start Over
The development of ultra–high field MRI guidance technology for neuronavigation
- Source :
- J Neurosurg
- Publication Year :
- 2022
- Publisher :
- Journal of Neurosurgery Publishing Group (JNSPG), 2022.
-
Abstract
- OBJECTIVE Magnetic resonance imaging at 7T offers improved image spatial and contrast resolution for visualization of small brain nuclei targeted in neuromodulation. However, greater image geometric distortion and a lack of compatible instrumentation preclude implementation. In this report, the authors detail the development of a stereotactic image localizer and accompanying imaging sequences designed to mitigate geometric distortion, enabling accurate image registration and surgical planning of basal ganglia nuclei. METHODS Magnetization-prepared rapid acquisition with gradient echo (MPRAGE), fast gray matter acquisition T1 inversion recovery (FGATIR), T2-weighted, and T2*-weighted sequences were optimized for 7T in 9 human subjects to visualize basal ganglia nuclei, minimize image distortion, and maximize target contrast-to-noise and signal-to-noise ratios. Extracranial spatial distortions were mapped to develop a skull-contoured image localizer embedded with spherical silicone fiducials for improved MR image registration and target guidance. Surgical plan accuracy testing was initially performed in a custom-developed MRI phantom (n = 5 phantom studies) and finally in a human trial. RESULTS MPRAGE and T2*-weighted sequences had the best measures among global measures of image quality (3.8/4, p < 0.0001; and 3.7/4, p = 0.0002, respectively). Among basal ganglia nuclei, FGATIR outperformed MPRAGE for globus pallidus externus (GPe) visualization (2.67/4 vs 1.78/4, p = 0.008), and FGATIR, T2-weighted imaging, and T2*-weighted imaging outperformed MPRAGE for substantia nigra visualization (1.44/4 vs 2.56/4, p = 0.04; vs 2.56/4, p = 0.04; vs 2.67/4, p = 0.003). Extracranial distortion was lower in the head’s midregion compared with the base and apex ( 1.17–1.33 mm; MPRAGE and FGATIR, p < 0.0001; T2-weighted imaging, p > 0.05; and T2*-weighted imaging, p = 0.013). Fiducial placement on the localizer in low distortion areas improved image registration (fiducial registration error, 0.79–1.19 mm; p < 0.0001) and targeting accuracy (target registration error, 0.60–1.09 mm; p = 0.04). Custom surgical software and the refined image localizer enabled successful surgical planning in a human trial (fiducial registration error = 1.0 mm). CONCLUSIONS A skull-contoured image localizer that accounts for image distortion is necessary to enable high-accuracy 7T imaging–guided targeting for surgical neuromodulation. These results may enable improved clinical efficacy for the treatment of neurological disease.
- Subjects :
- Laboratory Investigation
General Medicine
Subjects
Details
- ISSN :
- 19330693 and 00223085
- Volume :
- 137
- Database :
- OpenAIRE
- Journal :
- Journal of Neurosurgery
- Accession number :
- edsair.doi.dedup.....f0425b0b28c91929571bd9513275ca5f
- Full Text :
- https://doi.org/10.3171/2021.11.jns211078