Back to Search Start Over

Automated Universal BRAF State Detection within the Activation Segment in Skin Metastases by Pyrosequencing-Based Assay U-BRAFV600

Authors :
Benedikt Brors
Peter Helmbold
Roland Penzel
Alexander Skorokhod
Peter Schirmacher
Alexander Enk
Source :
PLoS ONE, PLoS ONE, Vol 8, Iss 3, p e59221 (2013)
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

Malignant melanoma is a highly-aggressive type of malignancy with considerable metastatic potential and frequent resistance to cytotoxic agents. BRAF mutant protein was recently recognized as therapeutic target in metastatic melanoma. We present a newly-developed U-BRAF(V600) approach - a universal pyrosequencing-based assay for mutation detection within activation segment in exon 15 of human braf. We identified 5 different BRAF mutations in a single assay analyzing 75 different formalin-fixed paraffin-embedded (FFPE) samples of cutaneous melanoma metastases from 29 patients. We found BRAF mutations in 21 of 29 metastases. All mutant variants were quantitatively detectable by the newly-developed U-BRAF(V600) assay. These results were confirmed by ultra-deep-sequencing validation ((~)60,000-fold coverage). In contrast to all other BRAF state detection methods, the U-BRAF(V600) assay is capable of automated quantitative identification of at least 36 previously-published BRAF mutations. Under the precaution of a minimum of 3% mutated cells in front of a background of wild type cells, U-BRAFV600 assay design completely excludes false wild-type results. The corresponding algorithm for classification of BRAF-mutated variants is provided. The single-reaction assay and data analysis automation makes our approach suitable for the assessment of large clinical sample sizes. Therefore, we suggest U-BRAF(V600) assay as a most powerful sequencing-based diagnostic tool to automatically identify BRAF state as a prerequisite to targeted therapy.

Details

ISSN :
19326203
Volume :
8
Database :
OpenAIRE
Journal :
PLoS ONE
Accession number :
edsair.doi.dedup.....efee09feb7176bfb8aadffa8ac7968cb
Full Text :
https://doi.org/10.1371/journal.pone.0059221