Back to Search Start Over

The Novel Cholinesterase–Monoamine Oxidase Inhibitor and Antioxidant, Ladostigil, Confers Neuroprotection in Neuroblastoma Cells and Aged Rats

Authors :
Tamar Amit
Moussa B.H. Youdim
Orly Weinreb
Orit Bar-Am
Source :
Journal of Molecular Neuroscience. 37:135-145
Publication Year :
2008
Publisher :
Springer Science and Business Media LLC, 2008.

Abstract

The current therapeutic advance in which future drugs are designed to possess varied pharmacological properties and act on multiple targets has stimulated the development of the multimodal drug, ladostigil (TV3326; (N-propargyl-(3R) aminoindan-5yl)-ethyl methyl carbamate). Ladostigil combines neuroprotective effects with monoamine oxidase (MAO)-A and MAO-B and cholinesterase (ChE) inhibitory activities in a single molecule, as a potential treatment for Alzheimer's disease (AD) and Lewy body disease. In the present study, we demonstrate that ladostigil (10(-6)-10 muM) dose-dependently increased cell viability, associated with increased activity of catalase and glutathione reductase and decrease of intracellular reactive oxygen species production in a cytotoxic model of human SH-SY5Y neuroblastoma cells exposed to hydrogen peroxide (H(2)O(2)). In addition, ladostigil significantly upregulated mRNA levels of several antioxidant enzymes (catalase, NAD(P)H quinone oxidoreductase 1 and peroxiredoxin 1) in both H(2)O(2)-treated SH-SY5Y cells, as well as in the high-density human SK-N-SH neuroblastoma cultured apoptotic models. In vivo chronic treatment with ladostigil (1 mg/kg per os per day for 30 days) markedly upregulated mRNA expression levels of various enzymes involved in metabolism and oxidation processes in aged rat hippocampus. In addition to its unique combination of ChE and MAO enzyme inhibition, these results indicate that ladostigil displays neuroprotective activity against oxidative stress-induced cell apoptosis, which might be valuable for aging and age-associated neurodegenerative diseases.

Details

ISSN :
15591166 and 08958696
Volume :
37
Database :
OpenAIRE
Journal :
Journal of Molecular Neuroscience
Accession number :
edsair.doi.dedup.....efe9694b9e146e604ee5e10fd4d11d1d
Full Text :
https://doi.org/10.1007/s12031-008-9139-6