Back to Search Start Over

The bottleneck conjecture

Authors :
Greg Kuperberg
Source :
Kuperberg, Greg. (1998). The bottleneck conjecture. Geom. Topol. 3 (1999) 119-135. doi: 10.2140/gt.1999.3.119. UC Davis: Department of Mathematics. Retrieved from: http://www.escholarship.org/uc/item/25g9p1ks, Geom. Topol. 3, no. 1 (1999), 119-135
Publication Year :
1998
Publisher :
eScholarship, University of California, 1998.

Abstract

The Mahler volume of a centrally symmetric convex body K is defined as M(K)= (Vol K)(Vol K^dual). Mahler conjectured that this volume is minimized when K is a cube. We introduce the bottleneck conjecture, which stipulates that a certain convex body K^diamond subset K X K^dual has least volume when K is an ellipsoid. If true, the bottleneck conjecture would strengthen the best current lower bound on the Mahler volume due to Bourgain and Milman. We also generalize the bottleneck conjecture in the context of indefinite orthogonal geometry and prove some special cases of the generalization.<br />17 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol3/paper5.abs.html

Details

Language :
English
Database :
OpenAIRE
Journal :
Kuperberg, Greg. (1998). The bottleneck conjecture. Geom. Topol. 3 (1999) 119-135. doi: 10.2140/gt.1999.3.119. UC Davis: Department of Mathematics. Retrieved from: http://www.escholarship.org/uc/item/25g9p1ks, Geom. Topol. 3, no. 1 (1999), 119-135
Accession number :
edsair.doi.dedup.....efbf2e209d05827d35847cdbffa086d3
Full Text :
https://doi.org/10.2140/gt.1999.3.119.