Back to Search
Start Over
The bottleneck conjecture
- Source :
- Kuperberg, Greg. (1998). The bottleneck conjecture. Geom. Topol. 3 (1999) 119-135. doi: 10.2140/gt.1999.3.119. UC Davis: Department of Mathematics. Retrieved from: http://www.escholarship.org/uc/item/25g9p1ks, Geom. Topol. 3, no. 1 (1999), 119-135
- Publication Year :
- 1998
- Publisher :
- eScholarship, University of California, 1998.
-
Abstract
- The Mahler volume of a centrally symmetric convex body K is defined as M(K)= (Vol K)(Vol K^dual). Mahler conjectured that this volume is minimized when K is a cube. We introduce the bottleneck conjecture, which stipulates that a certain convex body K^diamond subset K X K^dual has least volume when K is an ellipsoid. If true, the bottleneck conjecture would strengthen the best current lower bound on the Mahler volume due to Bourgain and Milman. We also generalize the bottleneck conjecture in the context of indefinite orthogonal geometry and prove some special cases of the generalization.<br />17 pages. Published copy, also available at http://www.maths.warwick.ac.uk/gt/GTVol3/paper5.abs.html
- Subjects :
- Mathematics - Differential Geometry
Generalization
Context (language use)
math.FA
52A40, 46B20, 53C99
Upper and lower bounds
Bottleneck
Mahler volume
Combinatorics
euclidean geometry
Mathematics - Metric Geometry
FOS: Mathematics
Physical Sciences and Mathematics
metric geometry
Mathematics::Metric Geometry
Mathematics
central symmetry
Conjecture
Mahler conjecture
math.MG
52A40
Metric Geometry (math.MG)
Ellipsoid
53C99
Functional Analysis (math.FA)
Mathematics - Functional Analysis
46B20
math.DG
Differential Geometry (math.DG)
bottleneck conjecture
Convex body
Geometry and Topology
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Kuperberg, Greg. (1998). The bottleneck conjecture. Geom. Topol. 3 (1999) 119-135. doi: 10.2140/gt.1999.3.119. UC Davis: Department of Mathematics. Retrieved from: http://www.escholarship.org/uc/item/25g9p1ks, Geom. Topol. 3, no. 1 (1999), 119-135
- Accession number :
- edsair.doi.dedup.....efbf2e209d05827d35847cdbffa086d3
- Full Text :
- https://doi.org/10.2140/gt.1999.3.119.