Back to Search Start Over

Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model

Authors :
Sebastian Marwitz
January Weiner
Thierry Rolling
Victor Spinu
Dörte Nitschkowski
Florian P. Maurer
Marius Müller
Jan Heyckendorf
Anna M. Mandalakas
Jan Rybniker
Torsten Goldmann
Maja Reimann
Michael Hoelscher
Markus Unnewehr
Korkut Avsar
Helmut J. F. Salzer
Elmira Ibraim
Ioana D. Olaru
Andrea Rachow
Gunar Günther
Frank van Leth
Maren Schuhmann
Dagmar Schaub
Christoph Lange
Barbara Kalsdorf
Cristina Popa
Elena Terhalle
Patricia Sanchez-Carballo
Irina Kontsevaya
Isabelle Suárez
Stefan H. E. Kaufmann
Andrew R. DiNardo
Global Health
AII - Infectious diseases
APH - Global Health
APH - Methodology
Health Economics and Health Technology Assessment
Source :
European respiratory journal, 58(3):2003492. European Respiratory Society, Heyckendorf, Jan; Marwitz, Sebastian; Reimann, Maja; Avsar, Korkut; DiNardo, Andrew; Günther, Gunar; Hoelscher, Michael; Ibraim, Elmira; Kalsdorf, Barbara; Kaufmann, Stefan H E; Kontsevaya, Irina; van Leth, Frank; Mandalakas, Anna Maria; Maurer, Florian P; Müller, Marius; Nitschkowski, Dörte; Olaru, Ioana D; Popa, Cristina; Rachow, Andrea; Rolling, Thierry; ... (2021). Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model. European respiratory journal, 58(3) European Respiratory Society 10.1183/13993003.03492-2020 , European Respiratory Journal, 58(3):2003492, 1-13. European Respiratory Society, Heyckendorf, J, Marwitz, S, Reimann, M, Avsar, K, DiNardo, A R, Günther, G, Hoelscher, M, Ibraim, E, Kalsdorf, B, Kaufmann, S H E, Kontsevaya, I, van Leth, F, Mandalakas, A M, Maurer, F P, Müller, M, Nitschkowski, D, Olaru, I D, Popa, C, Rachow, A, Rolling, T, Rybniker, J, Salzer, H J F, Sanchez-Carballo, P, Schuhmann, M, Schaub, D, Spinu, V, Suárez, I, Terhalle, E, Unnewehr, M, Weiner, J, Goldmann, T & Lange, C 2021, ' Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model ', European Respiratory Journal, vol. 58, no. 3, 2003492, pp. 1-13 . https://doi.org/10.1183/13993003.03492-2020
Publication Year :
2021

Abstract

BackgroundThe World Health Organization recommends standardised treatment durations for patients with tuberculosis (TB). We identified and validated a host-RNA signature as a biomarker for individualised therapy durations for patients with drug-susceptible (DS)- and multidrug-resistant (MDR)-TB.MethodsAdult patients with pulmonary TB were prospectively enrolled into five independent cohorts in Germany and Romania. Clinical and microbiological data and whole blood for RNA transcriptomic analysis were collected at pre-defined time points throughout therapy. Treatment outcomes were ascertained by TBnet criteria (6-month culture status/1-year follow-up). A whole-blood RNA therapy-end model was developed in a multistep process involving a machine-learning algorithm to identify hypothetical individual end-of-treatment time points.Results50 patients with DS-TB and 30 patients with MDR-TB were recruited in the German identification cohorts (DS-GIC and MDR-GIC, respectively); 28 patients with DS-TB and 32 patients with MDR-TB in the German validation cohorts (DS-GVC and MDR-GVC, respectively); and 52 patients with MDR-TB in the Romanian validation cohort (MDR-RVC). A 22-gene RNA model (TB22) that defined cure-associated end-of-therapy time points was derived from the DS- and MDR-GIC data. The TB22 model was superior to other published signatures to accurately predict clinical outcomes for patients in the DS-GVC (area under the curve 0.94, 95% CI 0.9–0.98) and suggests that cure may be achieved with shorter treatment durations for TB patients in the MDR-GIC (mean reduction 218.0 days, 34.2%; pConclusionBiomarker-guided management may substantially shorten the duration of therapy for many patients with MDR-TB.

Details

Language :
English
ISSN :
09031936
Database :
OpenAIRE
Journal :
European respiratory journal, 58(3):2003492. European Respiratory Society, Heyckendorf, Jan; Marwitz, Sebastian; Reimann, Maja; Avsar, Korkut; DiNardo, Andrew; G&#252;nther, Gunar; Hoelscher, Michael; Ibraim, Elmira; Kalsdorf, Barbara; Kaufmann, Stefan H E; Kontsevaya, Irina; van Leth, Frank; Mandalakas, Anna Maria; Maurer, Florian P; M&#252;ller, Marius; Nitschkowski, D&#246;rte; Olaru, Ioana D; Popa, Cristina; Rachow, Andrea; Rolling, Thierry; ... (2021). Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model. European respiratory journal, 58(3) European Respiratory Society 10.1183/13993003.03492-2020 <http://dx.doi.org/10.1183/13993003.03492-2020>, European Respiratory Journal, 58(3):2003492, 1-13. European Respiratory Society, Heyckendorf, J, Marwitz, S, Reimann, M, Avsar, K, DiNardo, A R, G&#252;nther, G, Hoelscher, M, Ibraim, E, Kalsdorf, B, Kaufmann, S H E, Kontsevaya, I, van Leth, F, Mandalakas, A M, Maurer, F P, M&#252;ller, M, Nitschkowski, D, Olaru, I D, Popa, C, Rachow, A, Rolling, T, Rybniker, J, Salzer, H J F, Sanchez-Carballo, P, Schuhmann, M, Schaub, D, Spinu, V, Su&#225;rez, I, Terhalle, E, Unnewehr, M, Weiner, J, Goldmann, T &amp; Lange, C 2021, &#39; Prediction of anti-tuberculosis treatment duration based on a 22-gene transcriptomic model &#39;, European Respiratory Journal, vol. 58, no. 3, 2003492, pp. 1-13 . https://doi.org/10.1183/13993003.03492-2020
Accession number :
edsair.doi.dedup.....ef72f5ef3406b43fadab06b729aeb5be
Full Text :
https://doi.org/10.1183/13993003.03492-2020