Back to Search
Start Over
Explicit inverse of a tridiagonal (p,r)-Toeplitz matrix
- Source :
- Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
- Publication Year :
- 2016
-
Abstract
- We have named tridiagonal ( p , r ) -Toeplitz matrix to those tridiagonal matrices in which each diagonal is a quasi-periodic sequence, d ( p + j ) = r d ( j ) , so with period p ∈ N but multiplied by a real number r . We present here the necessary and sufficient conditions for the invertibility of this kind of matrices and explicitly compute their inverse. The techniques we use are related with the solution of boundary value problems associated to second order linear difference equations. These boundary value problems can be expressed throughout the discrete Schrodinger operator and their solutions can be computed using recent advances in the study of linear difference equations with quasi-periodic coefficients. The conditions that ensure the uniqueness solution of the boundary value problem lead us to the invertibility conditions for the matrix, whereas the solutions of the boundary value problems provides the entries of the inverse matrix.
- Subjects :
- Pure mathematics
Toeplitz, Matrius de
Algebras, Linear
boundary value problems
education
Tridiagonal matrix algorithm
Inverse
quasi–periodic sequences
010103 numerical & computational mathematics
discrete Schrödinger operator
01 natural sciences
Matrix (mathematics)
Matrix splitting
matrix theory
Discrete Mathematics and Combinatorics
Boundary value problem
0101 mathematics
Mathematics
Anàlisi numèrica
Numerical Analysis
Algebra and Number Theory
Band matrix
Tridiagonal matrix
010102 general mathematics
Mathematical analysis
15 Linear and multilinear algebra
matrix theory [Classificació AMS]
15 Linear and multilinear algebra [Classificació AMS]
Matemàtiques i estadística [Àrees temàtiques de la UPC]
39 Difference and functional equations::39A Difference equations [Classificació AMS]
Toeplitz matrix
31 Potential theory [Classificació AMS]
tridiagonal matrices
Toeplitz matrices
Equacions diferencials lineals
Differential equations, Linear
Geometry and Topology
Matemàtiques i estadística::Equacions diferencials i integrals::Equacions en diferències [Àrees temàtiques de la UPC]
Àlgebra lineal
second order linear difference equations
Numerical analysis
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
- Accession number :
- edsair.doi.dedup.....ef72034638cdd509eb6f5b23291e13b0