Back to Search Start Over

Explicit inverse of a tridiagonal (p,r)-Toeplitz matrix

Authors :
María José Jiménez Jiménez
Andrés M. Encinas
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Universitat Politècnica de Catalunya. COMPTHE - Combinatòria i Teoria Discreta del Potencial pel control de paràmetres en xarxes
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Publication Year :
2016

Abstract

We have named tridiagonal ( p , r ) -Toeplitz matrix to those tridiagonal matrices in which each diagonal is a quasi-periodic sequence, d ( p + j ) = r d ( j ) , so with period p ∈ N but multiplied by a real number r . We present here the necessary and sufficient conditions for the invertibility of this kind of matrices and explicitly compute their inverse. The techniques we use are related with the solution of boundary value problems associated to second order linear difference equations. These boundary value problems can be expressed throughout the discrete Schrodinger operator and their solutions can be computed using recent advances in the study of linear difference equations with quasi-periodic coefficients. The conditions that ensure the uniqueness solution of the boundary value problem lead us to the invertibility conditions for the matrix, whereas the solutions of the boundary value problems provides the entries of the inverse matrix.

Details

Language :
English
Database :
OpenAIRE
Journal :
Recercat. Dipósit de la Recerca de Catalunya, instname, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC)
Accession number :
edsair.doi.dedup.....ef72034638cdd509eb6f5b23291e13b0