Back to Search Start Over

Increased DMT-1 expression in placentas of women living in high-Cd-contaminated areas of Thailand

Authors :
Yupa Srithongchai
Wiphawi Hipkaeo
Laorrat Phuapittayalert
Natthiya Sakulsak
Pattaraporn Sonthi
Wisa Supanpaiboon
Keerakarn Somsuan
Source :
Environmental Science and Pollution Research. 26:141-151
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

Cadmium (Cd) is a toxic heavy metal and contamination was reported in soil and rice in several areas of Thailand. Humans are normally exposed to environmental Cd, leading to gradual Cd accumulation in their bodies, including the placenta. DMT-1 is a divalent metal transporter which is found in placental tissue and plays a vital role in the transportation of Fe2+ and Cd2+. This study investigated DMT-1 protein and mRNA expressions in full term human placentas comparing those from high-Cd-contaminated areas (high-Cd group) and low-Cd-contaminated areas (low-Cd group), n = 6 per group. The maternal blood Cd (B-Cd) and placental Cd (P-Cd) of the high-Cd group was significantly raised in comparison with those in the low-Cd group. DMT-1 in the fetal portion of the placentas was localized in the apical and basal portions of the cytoplasm of the syncytiotrophoblastic cells, the endothelium of fetal capillaries which is functional structure of the placental barrier, and was also found in the cytoplasm of Hofbauer cells. Moreover, DMT-1 localization in the maternal portion was also detected in most decidual cells. In addition, the DMT-1 protein and mRNA expressions in the high-Cd group were significantly higher than those in the low-Cd group. Therefore, we suggest that pregnant women, who are exposed to environmental Cd, show an increased level of Cd in their maternal blood and this Cd can accumulate in the placenta. Intracellular Cd may induce DMT-1 mRNA transcription which further translates into DMT-1 protein, which can then function as a reciprocal Cd transporter in placental tissue.

Details

ISSN :
16147499 and 09441344
Volume :
26
Database :
OpenAIRE
Journal :
Environmental Science and Pollution Research
Accession number :
edsair.doi.dedup.....ef5375290ad26825773d041782e71c17
Full Text :
https://doi.org/10.1007/s11356-018-3598-2