Back to Search Start Over

Analysis of hyperspectral images for detection of drought stress and recovery in maize plants in a high-throughput phenotyping platform

Authors :
Paul Scheunders
Mohd Shahrimie Mohd Asaari
Stien Mertens
Nathalie Wuyts
Stijn Dhondt
Dirk Inzé
Source :
Computers and electronics in agriculture
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

The study of physiological processes resulting from water-limited conditions in crops is essential for the selection of drought-tolerant genotypes and the functional analysis of related genes. A promising, non-invasive technique for plant trait analysis is close-range hyperspectral imaging (HSI), which has great potential for the early detection of plant responses to water deficit stress. In this work, a data analysis method is described that, unlike vegetation indices, the present method applies spectral similarity on selected bands with high discriminative information, while requiring a careful treatment of uninformative illumination effects. The latter issue is solved by a standard normal variate (SNV) normalization that removes linear effects and a supervised clustering approach to remove pixels that exhibit nonlinear multiple scattering effects. On the remaining pixels, the stress-related dynamics is quantified by a spectral analysis procedure that involves a supervised band selection procedure and a spectral similarity measure against well-watered control plants. The proposed method was validated by a large-scale study of water-stress and recovery of maize plants in a high-throughput plant phenotyping platform. The results showed that the analysis method allows for an early detection of drought stress responses and of recovery effects shortly after re-watering.

Details

ISSN :
01681699
Volume :
162
Database :
OpenAIRE
Journal :
Computers and Electronics in Agriculture
Accession number :
edsair.doi.dedup.....ef2d43597f61cbbc74b2e75cdb34adcc
Full Text :
https://doi.org/10.1016/j.compag.2019.05.018