Back to Search Start Over

Secure PUF-based Authentication and Key Exchange Protocol using Machine Learning

Authors :
Amir Ali-pour
Fatemeh Afghah
David Hely
Vincent Beroulle
Giorgio Di Natale
Architectures and Methods for Resilient Systems (TIMA-AMfoRS )
Techniques de l'Informatique et de la Microélectronique pour l'Architecture des systèmes intégrés (TIMA)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
Clemson University
Laboratoire de Conception et d'Intégration des Systèmes (LCIS)
Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI)
Direction de Recherche Technologique (CEA) (DRT (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
IEEE
Source :
IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2022), IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2022), Jul 2022, Pafos, Cyprus, IEEELink
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Error Correction Codes and Fuzzy Extractors (FE) using publicly available helper data are used to increase the reliability of the secret value generated from noisy sources such as Physically Unclonable Functions (PUFs). Publicly available helper data is, in turn, vulnerable against Helper Data ma- nipulation attacks due to its correlation with the secret value. Instead of using helper data for FE-based error correction, we propose a locally recoverable repetition coding mechanism. Our proposed mechanism is based on sharing only the user’s generated challenge values, which is inherently secure against machine learning and PUF cloning attacks. We evaluate the reliability of our method using simulated challenge response pairs (CRP)s captured from various XOR Arbiter PUF structures at different levels of noise embedded in the PUF CRP characteristic. We show for instance that in a scenario of using PUF with 10% error-rate, our method can successfully recover the encryption key with close to zero failure-rate with a repetition code length of 10 or higher.

Details

Language :
English
Database :
OpenAIRE
Journal :
IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2022), IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2022), Jul 2022, Pafos, Cyprus, IEEELink
Accession number :
edsair.doi.dedup.....eee36f865e9e90beb96c2706951cce57