Back to Search Start Over

Four-dimensional locally strongly convex homogeneous affine hypersurfaces

Authors :
Abdelouahab Chikh Salah
Luc Vrancken
Université de Ghardaïa
Laboratoire de Mathématiques et leurs Applications de Valenciennes - EA 4015 (LAMAV)
Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Centre National de la Recherche Scientifique (CNRS)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)
Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven)
Source :
Journal of Geometry, Journal of Geometry, Springer Verlag, 2017, 108 (1), pp.119-147. ⟨10.1007/s00022-016-0330-6⟩
Publication Year :
2017
Publisher :
BASEL, 2017.

Abstract

© 2016, Springer International Publishing. We study four-dimensional locally strongly convex, locally homogeneous, hypersurfaces whose affine shape operator has two distinct principal curvatures. In case that one of the eigenvalues has dimension 1 these hypersurfaces have been previously studied in Dillen and Vrancken (Math Z 212:61–72, 1993, J Math Soc Jpn 46:477–502, 1994) and Hu et al. (Differ Geom Appl 33:46–74, 2014) in which a classification of such submanifolds was obtained in dimension 4 and 5 under the additional assumption that the multiplicity of one of the eigenvalues is 1. In this paper we complete the classification in dimension 4 by considering the case that the multiplicity of both eigenvalues is 2. ispartof: Journal of Geometry vol:108 issue:1 pages:119-147 status: published

Details

Language :
English
ISSN :
00472468 and 14208997
Database :
OpenAIRE
Journal :
Journal of Geometry, Journal of Geometry, Springer Verlag, 2017, 108 (1), pp.119-147. ⟨10.1007/s00022-016-0330-6⟩
Accession number :
edsair.doi.dedup.....eee287c591c76dd07e2308610e8a63e4
Full Text :
https://doi.org/10.1007/s00022-016-0330-6⟩